Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T01:23:44.100Z Has data issue: false hasContentIssue false

AFM Study of Film Growth Kinetics in Heteroepitaxy

Published online by Cambridge University Press:  25 February 2011

William M. Tong
Affiliation:
Department of Chemistry & Biochemistry/Solid State Science Center, UCLA, Los Angeles, California 90024-1549, USA
Eric J. Snyder
Affiliation:
Department of Chemistry & Biochemistry/Solid State Science Center, UCLA, Los Angeles, California 90024-1549, USA
R. Stanley Williams
Affiliation:
Department of Chemistry & Biochemistry/Solid State Science Center, UCLA, Los Angeles, California 90024-1549, USA
Akihisa Yanase
Affiliation:
Photodynamics Research Center, Frontier Research Program, RIKEN, ICR Building, 663 Minami-Yoshinari, Aoba-ku, Sendai, 989-32, Japan
Yusaburo Segawa
Affiliation:
Photodynamics Research Center, Frontier Research Program, RIKEN, ICR Building, 663 Minami-Yoshinari, Aoba-ku, Sendai, 989-32, Japan
Mark S. Anderson
Affiliation:
Space Materials Science & Technology Section, Jet Propulsion Laboratory, Pasadena, California 91109-8099, USA
Get access

Abstract

The growth of CuCl/CaF2 heterostructures has been studied with an atomic force microscope (AFM). We have grown by molecular beam epitaxy (MBE) CuCl thin films at various substrate temperatures and thicknesses on CaF2(111) substrates. AFM studies reveal that islanding is the dominant growth mechanism. We calculated the height-height correlation function, 〈lh(qt)|2〉, for each of our films and compared them to the predictions made by the Shadowing Growth Theory, a preexisting growth model that enabled us to extract the important kinetic parameter of surface diffusion length for the growth condition of each of the four films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Eferences

1. Konig, H. and Helwig, G., Optik, 14, 83 (1954).Google Scholar
2. Herring, C., J. Appl. Phys., 21, 301 (1950).Google Scholar
3. Karunasiri, R.P.U., Bruinsma, R., Rudnick, J., Phys. Rev. Lett., 62, 788, (1989).Google Scholar
4. ibid, in Non-linear Structures in Physical Systems, edited by Lam, L. and Morris, H. C. (Springer, New York, 1990).Google Scholar
5. Bales, G. S., Bruinsma, R.. Rudnick, J., Williams, R. S., Science, 249, 264, (1990).Google Scholar
6. Karunasiri, R. P. U., Ph.D. Thesis, UCLA Physics (1991).Google Scholar
7. Williams, R. S., Shuh, D. K., Segawa, Y., J. Vac. Sci. Tech. A., 6, 1950 (1988).Google Scholar
8. Shuh, D. K., Williams, R. S., Segawa, Yusaburo, Kusano, Jun-ichi, Aoyagi, Yoshinobu, Namba, Susumu, Phys. Rev. B., 44, 5827 (1991).Google Scholar
9. Eklund, E. A., Bruinsma, R., Rudnick, J., Williams, R. S., Phys. Rev. Lett., 67,1759 (1991)Google Scholar
10. Eklund, E. A., Williams, R. S., Snyder, E. J., Mat. Res. Soc. Symp. Proc., 157, 305 (1990).Google Scholar
11. Eklund, E. A., Snyder, E. J., Williams, R. S., Surf. Sci., (in press).Google Scholar
13. Eklund, E. A., PThesis, h.D., UCLA Physics (1991).Google Scholar