Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T01:19:45.370Z Has data issue: false hasContentIssue false

All-inorganic Light Emitting Devices Based on Semiconducting Nanoparticles

Published online by Cambridge University Press:  01 February 2011

Ekaterina Neshataeva
Affiliation:
ekaterina.neshataeva@uni-due.de, University Duisburg-Essen, Werkstoffe der Elektrotechnik, Duisburg, Germany
Tilmar Kümmell
Affiliation:
tilmar.kuemmel@uni-due.de, University Duisburg-Essen, Werkstoffe der Elektrotechnik, Duisburg, NRW, Germany
André Ebbers
Affiliation:
andre.ebbers@evonik.com, Evonik-Degussa GmbH, Creavis, Marl, Germany
Gerd Bacher
Affiliation:
gerd.bacher@uni-due.de, University Duisburg-Essen, Werkstoffe der Elektrotechnik, Duisburg, NRW, Germany
Get access

Abstract

We demonstrate light emitting devices based on ZnO nanoparticles and realized without any additional organic support layers. Pure ZnO devices showed electroluminescence in the visible and the UV spectral range at voltages below 10 V. In order to facilitate hole injection and to stabilize device operation, additional p-type inorganic support layers were introduced. Sputtered NiO layers are shown to improve the stability of the device and its I/V behavior. First bilayer devices consisting of a layer sequence of p-doped Si and naturally n-doped ZnO nanoparticles revealed promising electro-luminescence results with a high contribution in the UV spectral range at reduced current densities.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Colvin, V. L., Schlamp, M. C. and Alivisatos, A. P., Nature 370, 354 (1994).Google Scholar
2. Coe, S., Woo, W., Bawendi, M. G. and Bulović, V., Nature 420, 800 (2002).Google Scholar
3. Anikeeva, P. O., Halpert, J. E., Bawendi, M. G. and Buloviá, V., Nano Lett. 9, 2532 (2009).Google Scholar
4. Tang, Z. K., Wong, G. K. L., Yu, P., Kawasaki, M., Ohtomo, A., Koinuma, H. and Segawa, Y., Appl. Phys. Lett. 72, 3270 (1998).Google Scholar
5. Tsukazaki, A., Ohtomo, A., Onuma, T., Ohtani, M., Makino, T., Sumiya, M., Ohtani, K., Chichibu, S. F., Fuke, S., Segawa, Y., Ohno, H., Koinuma, H. and Kawasaki, M., Nat Mater. 4, 42 (2004).Google Scholar
6. Ning, G., Zhao, X., Li, J. and Zhang, C., Optical Materials 28, 385 (2006).Google Scholar
7. Neshataeva, E., Kümmell, T., Ebbers, A. and Bacher, G., Electron. Lett. 44, 1485 (2008).Google Scholar
8. Neshataeva, E., Kümmell, T., Ebbers, A. and Bacher, G., Appl. Phys. Lett. 94, 091115 (2009).Google Scholar
9. Neshataeva, E., Kümmell, T., Ebbers, A. and Bacher, G., Proceedings of SPIE. 7217, 721707 (2009).Google Scholar
10. Caruge, J. M., Halpert, J. E., Wood, V., Buloviá, V. and Bawendi, M. G., Nature Photon. 2, 247 (2008).Google Scholar
11. Wood, V., Panzer, M. J., Halpert, J. E., Caruge, J. M., Bawendi, M. G. and Buloviá, V.. ACS Nano. 3, 3581 (2009).Google Scholar
12. Ishida, Y., Fujimori, A., Ohta, H., Hirano, M. and Hosono, H., Appl. Phys. Lett. 89, 153502 (2006).Google Scholar
13. Xi, Y. Y., Hsu, Y. F., Djurišić, A. B., Ng, A. M. C., Chan, W. K., Tam, H. L. and Cheah, K. W., Appl. Phys. Lett. 92, 113505 (2008).Google Scholar
14. Wang, J., Lee, C., Chen, Y., Chen, C., Chen, Y., Lin, C. and Chen, Y., Appl. Phys. Lett. 95, 131117 (2009).Google Scholar
15. Chen, P., Ma, X. and Yang, D., J. Appl. Phys. 101, 053103 (2007).Google Scholar
16. Fei-Fei, W., Li, C., Rui-Bin, L., An-Lian, P. and Bing-Suo, Z., Chinese Phys. 16, 1790 (2007).Google Scholar
17. Sun, M., Zhang, Q. and Wu, J., J. Phys. D: Appl. Phys. 40, 3798 (2007).Google Scholar
18. Ou, Q., Matsuda, T., Mesko, M., Ogino, A. and Nagatsu, M., Jpn. J. Appl. Phys. 47, 389 (2008).Google Scholar