Article contents
Alloy Oxide Electrocatalysts for Regenerative Hydrogen-Halogen Fuel Cell
Published online by Cambridge University Press: 26 January 2011
Abstract
Stable, catalytically active, and inexpensive halogen electrodes are essential for the success of the regenerative hydrogen-halogen fuel cell as a competitive means of large-scale electricity storage. We report the synthesis and electrochemical testing of two novel electrode materials — ruthenium-cobalt and ruthenium-manganese alloy oxides. These alloys were fabricated by wet chemical synthesis methods as a coating on a titanium metal substrate and tested for chloride and bromide oxidation and for chlorine and bromine reduction. These alloy oxides exhibit high catalytic potency and good electrical conductivity good stability, while having a significantly reduced precious metal composition compared to commercial chloride oxidation electrodes made of the oxide of a ruthenium-titanium alloy. We tested alloys with Ru content as low as 1% that maintained good electrochemical activity. Stability tests indicate immeasurably small mass loss.
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 1311: Symposium GG – Next-Generation Fuel Cells—New Materials and Concepts , 2011 , mrsf10-1311-gg10-09
- Copyright
- Copyright © Materials Research Society 2011
Footnotes
Present Affiliation: Biomaterial and Health Science Centre, University of Texas, Houston-77030, Texas, U.S.A
References
REFERENCES
- 6
- Cited by