Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T15:20:42.403Z Has data issue: false hasContentIssue false

AlN/GaN Distributed Bragg Reflectors Grown via Metal Organic Vapor Phase Epitaxy using GaN Insertion Layers

Published online by Cambridge University Press:  21 February 2012

L. E. Rodak
Affiliation:
Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506
J. Peacock
Affiliation:
Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506
J. Justice
Affiliation:
Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506
D. Korakakis
Affiliation:
Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506
Get access

Abstract

Distributed Bragg Reflectors (DBRs) are an important component of various optoelectronic devices for ultra violet and visible wavelengths. In the III-Nitride material system, Aluminum Nitride (AlN) and Gallium Nitride (GaN) offer a large contrast in refractive index and are therefore well suited for fabricating DBRs with high reflectivity and wide bandwidths using relatively few periods. However, the large lattice and thermal mismatch leads to cracking in these heterostructures. In this work short period superlattice layers have been used to fabricate high reflectivity (> 94%) nitride based DBRs via Metal Organic Vapor Phase Epitaxy. Short period AlN/GaN superlattices containing three to four monolayers of GaN have been employed as the low refractive index layer in DBRs to minimize cracking. Using this technique, crack-free DBRs reflecting from 440-475 nm with up to 25 periods have been fabricated. The technique has been proven to be versatile and resulted in large area yield DBRs grown on a variety of different sapphire substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lin, C.-C. and Lee, C.-T.. IEEE Photonics Technology Letters, 22, 1291 (2010).Google Scholar
2. Dorsaz, J., Carlin, J.-F., Zellweger, C. M., Gradecak, S., and Ilegems, M.. Phys. Stat. Sol. (a) 201, 2675 (2004).Google Scholar
3. Lu, T.-C., Chen, S.-W., Wu, T.-T., Tu, P.-M., Chen, C.-K., Chen, C.-H., Li, Z.-Y., Kuo, H.-C., and Wang, S.-C., Appl. Phys. Lett. 97, 071114 (2010).Google Scholar
4. Optoelectronic Properties of Semiconductors and Superlattices, GaN and Related Materials II, edited by S. J. Pearton, (Canada, Gordon and Breach Science Publishers, 2000).Google Scholar
5. Lu, T.-C., Chu, J.-T., Chen, S.-W., Cheng, B.-S., Kuo, H.-C., and Wang, S.-C., Jap. J. Appl. Phys. 47, 6655 (2008).Google Scholar
6. Ng, H.M., Moustakas, T. D., and Chu, S. N. G.. Appl. Phys. Lett. 76, 2818 (2000).Google Scholar
7. Butté, R., Feltin, E., Dorsaz, J., Christmann, G., Carlin, J. F., Grandjean, N., Ilegems, M.. Jpn. J. Appl. Phys. 44, 7207 (2005).Google Scholar
8. Someya, T. and Arakawa, Y., Appl. Phys. Lett. 73, 3653 (1998)Google Scholar
9. Rodak, L. E., Miller, C. M., and Korakakis, D., Superlattices Microstruct., 49, 5259 (2011).Google Scholar
10. Cheong, H. S., Cuong, T. V., Kim, H. G., Park, J. Y., Kim, C. S., Hong, C. H., Baek, J. H., Lee, S. H., Kim, T. M., and Yu, Y. M., Phys. Stat. Sol. (a) 201, 2799 (2004).Google Scholar
11. Rodak, L. E. and Korakakis, D.. Appl. Phys. Lett. 99, 201903 (2011).Google Scholar
12. Rodak, L. E. and Korakakis, D., J. Electron. Mater. 40, 388 (2011).Google Scholar
13. Schineller, B., Heuken, M., Appl. Phys. A, 479 (2007).Google Scholar
14. Talalaev, R.A., Yakovlev, E.V., Makarov, Yu.N., Yavich, B.S., Wang, W.N., PS.VI.05, in: 10th European Workshop of MOVPE, 2003.Google Scholar
15. Lee, K., Rodak, L. E., Kumbham, V., Narang, V., Hornak, L. A., and Korakakis, D., Mater. Res. Soc. Symp. Proc., 1288, mrsf10-1288-g11-21 (2011).Google Scholar