Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T06:55:04.825Z Has data issue: false hasContentIssue false

Alternative Reactants for the Laser-Assisted Deposition of Silicon Nitride on Metals.

Published online by Cambridge University Press:  28 February 2011

Julian P. Partridge
Affiliation:
The University of Connecticut, Institute of Materials Science, Box U-136, Storrs, CT 06268.
Peter R. Strutt
Affiliation:
The University of Connecticut, Institute of Materials Science, Box U-136, Storrs, CT 06268.
Get access

Abstract

An alternative approach is described for the laser synthesis of silicon nitride layers using relatively innoccuous, non-pyrophoric reactants such as hexamethyltrisilazane. The pyrolysis process produces 2000 A particles of silicon nitride and the reaction mechanisms are invesigated using infrared spectroscopic analyses. The morphology of the deposited layer is critically dependent on process conditions due to considerable differences in the coupling efficiencies of the nitride deposit and the underlying metallic substrate. The existence of a laser-generated plasma above the metal is discussed in the light of microstructural features observed.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Airey, A.C., Clarke, S., Popper, P.. Trans. J. Br. Ceram. Soc. 22, 305 (1973).Google Scholar
2. Kajima, K., Setaka, N., Tanaka, H.. J. Cryst. Growth. 24/25,183 (1974).CrossRefGoogle Scholar
3. Galasso, F., Kuntz, U., Croft, W.J.. J. Am. Ceram. Soc. 55, 8, 431 (1972).CrossRefGoogle Scholar
4. Morosanu, C.E.. Microelectron. Reliab. 20, 357 (1980).CrossRefGoogle Scholar
5. Boyer, P.K., Moore, C.A., Solanki, R., Ritchie, W.K., Roche, G.A., Collins, G.J.. Mat. Res. Soc. Symp. Proc. (Laser Diagn. Photochemical Process. Semicond. Devices) 17, 119 (1983).CrossRefGoogle Scholar
6. Boyer, P.K., Moore, C.A., Solanki, R., Ritchie, W.K., Roche, G.A., Collins, G.J.. Proc. SPIE- Int. Soc. Opt. Eng. (Lasr Process. Semicond. Devices). 385, 120 (1983).Google Scholar
7. Deutsch, T.F., Silversmith, D.J., Mountain, R.W.. Mat. Res. Soc. Symp. Proc. (Laser Process. Semicond. Devices). 17, 129 (1983).CrossRefGoogle Scholar
8. Danforth, S.C., Haggerty, J.S.. J. Am. Ceram. Soc. 66, 4, C58 (1983).CrossRefGoogle Scholar
9. Cannon, W.R., Danforth, S.C., Flint, J.H., Haggerty, J.S., Marra, R.A.. J. Am. Ceram. Soc. 65, 7, 324 (1982).Google Scholar
10. Cannon, W.R., Danforth, S.C., Haggerty, J.S., Marra, R.A.. J. Am. Ceram. Soc. 65, 7, 330 (1982).Google Scholar
11. Flint, J.H., Haggerty, J.S.. Proc. SPIE-Int. Soc. Opt. Eng. 458, 108 (1984).Google Scholar
12. Niihira, K., Hirai, T.. J. Mater. Sci. 11, 4, 593 (1976).Google Scholar
13. Partridge, J.P., Strutt, P.. Proc. SPIE-Int. Soc. Opt. Eng. 669, 150 (1986).Google Scholar
14. Rice, G.W.. J. Am. Ceram. Soc. 69, 8, C183 (1986).CrossRefGoogle Scholar
15. Beatty, C.L. in ‘Ultrastructure Processing of Advanced Structural and Electronic Materials’. Hench, L.L. ed. p256, Noyes Data (1984).Google Scholar
16. Allen, S.D.. Proc. SPIE-Int. Soc. Opt. Eng. 198, 49 (1979).Google Scholar
17. Matsunawa, A., Yoshida, H., Katayama, S.. Proc. ICALEO '84. 44, 35, LIA (1984).Google Scholar
18. Ready, J.F.. Appl. Phys. Lett. 3, 1, 11 (1963).CrossRefGoogle Scholar
19. Fowler, M.C., Smith, D.C.. J. Appl. Phys. 46, 1, 138 (1975).CrossRefGoogle Scholar
20. Thomas, P.D.. AIAAJ. 13, 10, 1279 (1975).Google Scholar
21. Bowen, H.K.. Mater. Sci. Eng. 44, 1, (1980).CrossRefGoogle Scholar
22. Gebhardt, J.J., Tanzilli, R.A., Harris, T.A.. J. Electrochem. Soc. 123, 1578, (1976).CrossRefGoogle Scholar
23. Peercy, P.S., Stein, H.S., Doyle, B.L., Wells, V.A.. 7th Int. Conf. CVD. Los Angeles, CA. Oct. 14–19, 1979.Google Scholar
24. Wong, J., Angell, C.A.. ‘Glass Structure by Spectroscopy’. Marcel Dekker,NY. p547 (1976).Google Scholar
25. Rand, M.J., Roberts, J.F.. J. Electrochem. Soc. 120, 446 (1973).CrossRefGoogle Scholar
26. Seyferth, D., Wiseman, G.H., Prud'homme, C.. J. Am. Ceram. Soc. 66, C13 (1983).CrossRefGoogle Scholar
27. Gorowitz, B., Gorczyca, T.B., Saia, R.J.. Solid State Tech. 197 (June 1975).Google Scholar
28. Chow, R., Lanford, W.A., Ke-Ming, W., Rosler, R.S.. J. Appl. Phys. 53, 8, 5630 (1982).Google Scholar
29. Lanford, W.J., Rand, M.J.. J. Appl. Phys. 49, 4, 2473 (1978).CrossRefGoogle Scholar
30. Chu, T.L., Lee, C.H., Gruber, G.A.. J. Electrochem. Soc. 114, 717 (1967).CrossRefGoogle Scholar
31. Seyferth, D., Wiseman, G.H.. J. Am. Ceram. Soc. 67, 7, c132 (1984).CrossRefGoogle Scholar
32. Greskovitch, C., Prochazka, S.. J. Am. Ceram. Soc. 64, 7, C96 (1981).Google Scholar
33. Arkles, B.. J. Electrochem. Soc. 133, 1, 233 (1986).CrossRefGoogle Scholar