Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T08:28:55.587Z Has data issue: false hasContentIssue false

Ambient Gas Effects on Debris Formed During KrF Laser Ablation of Polyimide

Published online by Cambridge University Press:  25 February 2011

Stephan Küper
Affiliation:
IBM Alnaden Research Center, 650 Harry Rd., San Jose, CA 95120
James Brannon
Affiliation:
IBM Alnaden Research Center, 650 Harry Rd., San Jose, CA 95120
Get access

Abstract

The surface debris that results from KrF excimer laser ablation of polyimide has been investigated as a function of the pressure. and atomic or molecular weight of several ambient gases: H2, He. Ne, air, Ar, Kr, and Xe. A linear relation between the measured debris radius and the inverse third root of the ambient pressure was found to exist, consistent with the predictions of blast wave theory. No measureable debris could be observed using helium or hydrogen gases up to 1 atm. similar to previous reports on helium. The derived value of the blast energy. equal to about 5% of the incident pulse energy, was used to estimate a nascent blast pressure of approximately 150 atm. By making the assumption that surface debris will form if the ablation fragments are confined in a “small” volume for a “sufficient” time, then conclusions from blast wave theory suggest how to decrease the amount of generated debris.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Koren, G. and Donelon, J. J.. Appl. Phys. B 45, 45, (1988).CrossRefGoogle Scholar
2 Koren, G. and Oppenheiml, U. P., Appl. Phys. B 42. 41 (1987).CrossRefGoogle Scholar
3 Taylor, R. S., Leopold, K. E., Singleto, D. L., Paraskevopoulos, n. G., and Irwin, R. S.. J. Appl. Phys. 64. 2815 (1988).Google Scholar
4 Singleton, D. L., Paraskevopoulos, G., Irwin, R. S., Taylor, R. S.. and Leopold, K. E., SPIE Proc. 998. 57 (1988).Google Scholar
5 Singleto, D. L., Paraskevopoulos, n. G., and Irwin, R. S., J. Appl. Phys. 66, 3324, (1989).CrossRefGoogle Scholar
6 Inc, L. P.., Lambda Highlights 24, 5, (1990).Google Scholar
7 Brode, H. L., J. Appl. Phys. 26. 766 (1955).Google Scholar
8 Taylor, G.. Proc. Royal Soc. A 201. 159 (1950).Google Scholar
9 Sedov, L.. Similarity and Dimensional Methods in Mechanics (Academnic Press, New York. 1959).Google Scholar
10 Dyer, P. E. and Sidlhu, J., J. Appl. Phys. 64, 4657, (1988).Google Scholar
11 Srinivasan, R., Casey, K., Braren, B., and Yeh, M., J. Appl. Phys. 67. 1604 (1991)).CrossRefGoogle Scholar
12 Ventzek, P. amd Gilgenbach, R.. J. Appl. Phys. 68, 965, (1990).Google Scholar
13 Walsh, J. and Deutsch, T.. Appl. Phys. B 52, 217, (1991).Google Scholar
14 Grun, J., Stanper, J., Mantka, C., Resnick, J., Burnis, R., Crawford, J., and Ripin, B.. Phys. Rev. Lett. 66. 2738 (1991).Google Scholar
15 Gupta, A., Braren, B., Casey, K., Hussey, B.. and Kelly, R., Appl. Phys. Lewm.,. accepted ((September. 1991 publication)).Google Scholar
16 Zel'dovich, Y. B. and Raizer, Y. P., Physics of Shock Waves atnd High-eTemperat ure IiydrodyinaUoic Phenonmena (Academic Press, New York, 1966).Google Scholar
17 Duley, W.. CO2 Lasers: Effects and Applications (Academic Press, New York. 1976).Google Scholar
18 Dyer, P. and Sidltu, J.. Optics and Lasers Eng. 6. 67 (1985).Google Scholar
19 Dyer, P. and Srinivasan, R., Appl. Phys. Lett. 48, 445, (1986).Google Scholar
20 Kinetic Theory of Gases (W. A. Benjimn in, Inc., Menlo Park, 1966).Google Scholar