Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T01:17:10.191Z Has data issue: false hasContentIssue false

Aminonitroheterocyclic N-Oxides – a New Class of Insensitive Energetic Materials

Published online by Cambridge University Press:  10 February 2011

Richard A. Hollins
Affiliation:
Naval Air Warfare Center Weapons Division, 1 Administration Circle, China Lake, CA 93555-6001
Lawrence H. Merwin
Affiliation:
Naval Air Warfare Center Weapons Division, 1 Administration Circle, China Lake, CA 93555-6001
Robin A. Nissan
Affiliation:
Naval Air Warfare Center Weapons Division, 1 Administration Circle, China Lake, CA 93555-6001
William S. Wilson
Affiliation:
Naval Air Warfare Center Weapons Division, 1 Administration Circle, China Lake, CA 93555-6001
Richard D. Gilardi
Affiliation:
Naval Research Laboratory, 4555 Overlook Ave SW, Washington, D.C. 20375-5000
Get access

Abstract

The need continues for new powerful but insensitive explosive ingredients, which match the performance of RDX with the insensitivity of TATB. One approach has been to take the inherent stability of an aromatic heterocycle, combine this with the explosive insensitivity and thermal stability associated with alternating amino and nitro groups, and to supplement the performance of the molecule with an energy contribution from the N-oxide functionality. The synthesis, characterization and properties (both sensitivity and performance) of aminonitropyridine-l-oxides and aminonitropyrimidine-1,3-dioxides will be described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Naval Surface Weapons Center. Estimation of Normal Densities of Explosives from Empirical Atomic Volumes, by Cichra, D.A., Holden, J.R. & Dickinson, C.R.. Silver Springs, Md., NSWC, February 1980. 47 pp. (NSWC-TR-79-273, publication UNCLASSIFIED.)Google Scholar
2. Rothstein, L.R. & Petersen, R., Prop. and Explo., 4, 56 (1979); 6, 91(1981).Google Scholar
3. Ritter, H. & Licht, H.H., J. Heterocyclic Chem., 32, 585 (1995).Google Scholar
4. Coburn, M.D. & Singleton, J.L., J. Heterocyclic Chem., 9, 1039 (1972).Google Scholar
5. Wozniak, M., Baranski, A. & Szpakiewicz, B., Liebigs Ann.Chem., 7 (1993).Google Scholar
6. Meisenheimer, J. & Patzig, E., Chem.Ber., 39, 2533 (1906); A.R. Katritzky & K.S. Laurenzo, J.Org.Chem., 51, 5039(1986).Google Scholar
7. Johnson, C.D., Katritzky, A.R.; & Viney, M., J. Chem. Soc. (B), 1211 (1967); C.D. Johnson, A.R. Katritzky, N. Shakir & M. Viney, J. Chem. Soc., (B) 1213 (1967).Google Scholar
8. Ritter, H. H. & Licht, H., Prop., Explo. and Pyro., 13, 25 (1988).Google Scholar
9. Carbon, J.A., J. Org. Chem., 26, 455 (1961).Google Scholar
10. Delia, T.J., Portlock, D.E. & Venton, D.L., J. Heterocyclic Chem., 5, 449 (1968).Google Scholar
11. Brown, D.J., J. Soc. Chem. Ind., 69, 353 (1950).Google Scholar
12. Taylor, E.C., Tseng, C.-P. & Rampal, J.B., J. Org. Chem., 47, 552 (1982).Google Scholar