Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T07:12:58.710Z Has data issue: false hasContentIssue false

An in Situ Hrem Study of Crystal Nucleation in Amorphous Silicon thin Films

Published online by Cambridge University Press:  25 February 2011

A. S. Kirtikar
Affiliation:
Dept. of Materials Science & Engineering, Stanford University, Stanford, CA 94305.
J. Morgiel
Affiliation:
Institute for Metals Research, Polish Academy of Science, Krakow, Poland.
R. Sinclair
Affiliation:
Dept. of Materials Science & Engineering, Stanford University, Stanford, CA 94305.
I-W. Wu
Affiliation:
Xerox Corporation, Palo Alto Research Center, Palo Alto, CA 94304.
A. Chiang
Affiliation:
Xerox Corporation, Palo Alto Research Center, Palo Alto, CA 94304.
Get access

Abstract

In Situ high resolution electron microscopy has proved to be a valuable tool in investigations involving interface reactions in a number of thin film systems. We have applied this technique to dynamically record nucleation and growth sequences during the amorphous (a-) to crystalline (c-) phase transformation in silicon thin films. Interpretation of the recordings has yielded a wealth of information on the mechanisms and to some extent the kinetics of solid phase crystallization. In our recordings, we have been able to capture the critical nucleus at the a-Si-SiO2 interface. Incorporating this into classical nucleation theory enables us to make an estimate of the a-Si-c-Si interfacial energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eyring, L., Dutner, C., Goral, J.P. and Holladay, A., Ultramicroscopy 18, 253 (1985).Google Scholar
2. Smith, D.J., Fryer, J.R. and Camps, R.A., Ultramicroscopy 12, 279 (1986).Google Scholar
3. Sinclair, R., Parker, M.A. and Kim, K.B., Ultramicroscopy 23, 383 (1987).Google Scholar
4. Sinclair, R., Yamashita, T., Parker, M.A., Kim, K.B.. Holloway, K. and Schwartz-man, A.F., Acta Crystall. A44, 965 (1988).Google Scholar
5. Morgiel, J., Wu, I-W., Chiang, A. and Sinclair, R., in Polysilicon Thin Films and Interfaces, edited by Raicu, B., Kamins, T., and Thompson, C.V. (Mat. Res. Soc. Symp. Proc. 182, Pittsburgh, PA 1990) pp. 191194.Google Scholar
6. Wu, I-W., Chiang, A., Fuse, M., Öveçoglu, L. and Huang, T.Y, J. Appl. Phys. 65, 4036 (1989).Google Scholar
7. Drosd, R. and Washburn, J., J. Appl. Phys. 53, 397 (1982).Google Scholar
8. Christian, J.W., The Theory of Transformations in Metals and Alloys, (Part I, Pergamon, Oxford, 1975), p. 418.Google Scholar
9. Volmer, M., Z. Elektrochem. 35, 555 (1939).Google Scholar
10. Becker, R. and Döring, W., Ann. Phys. 24, 719 (1935).Google Scholar
11. Grabow, M.H. and Gilmer, G.H., Surf. Sci. 124, 333 (1988).Google Scholar
12. Donovan, E.P, Spaepen, F., Turnbull, D., Poate, J.M. and Jacobson, D.C., Appl. Phys. Lett. 42, 698 (1983).Google Scholar
13. Vepřek, S., Iqbal, Z. and Sarott, F.A., Phil. Mag. B45, 137 (1982).Google Scholar
14. Spaepen, F., in Amorphous Materials: Modeling of Structure and Properties, edited by Vitek, V. (The Metallurgical Society of AIME, New York, 1983), p.265.Google Scholar
15. Roorda, S. and Sinke, W.C, Appl. Surf. Sci. 36, 588 (1989).Google Scholar