Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T01:17:07.819Z Has data issue: false hasContentIssue false

Analysis and Control of Plating Baths in the Electrodeposition of Copper Indium Gallium Selenide (CIGS) Films with Ion Chromatography

Published online by Cambridge University Press:  28 June 2011

Alan Kleiman-Shwarsctein
Affiliation:
SoloPower Inc. 5981 Optical Court, San Jose, CA 95138
Serdar Aksu
Affiliation:
SoloPower Inc. 5981 Optical Court, San Jose, CA 95138
Tuncay Cetiner
Affiliation:
SoloPower Inc. 5981 Optical Court, San Jose, CA 95138
Sarah Lastella
Affiliation:
SoloPower Inc. 5981 Optical Court, San Jose, CA 95138
Mustafa Pinarbasi
Affiliation:
SoloPower Inc. 5981 Optical Court, San Jose, CA 95138
Get access

Abstract

Cu(In,Ga)Se2 (CIGS) is one of the most advanced absorber materials with conversion efficiencies reaching up to about 20%. Electrodeposition of CIGS precursors is highly attractive due to its low cost, efficient utilization of raw materials and scalability to high-volume manufacturing, however, a strict chemistry control of the plating baths is required in a manufacturing environment to ensure a consistent plating process with high yields. In the present study, we tested the use of ion chromatography (IC), for the quantitative analysis of both the cationic and anionic species in a variety of aqueous alkaline electroplating solutions we developed for the fabrication of CIGS precursors. Using ion chromatography we were able to precisely determine the concentrations of several key anions commonly employed in the plating baths including chloride, sulfate, selenite, selenate, tartrate, citrate, gluconate, and ethylenediaminetetraacetate. Our results indicated IC might not be a suitable method to determine the cationic concentrations for Cu, In, Ga ions when complexing species, such as ethylenediaminetetraacetate, are present in the electroplating solutions. We determined that inductively coupled plasma optical emission spectroscopy (ICP-OES) could be used instead for the precise determination of the cationic concentrations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Repins, I., Contreras, M.A., Egaas, B., DeHart, C., Scharf, J., Perkins, C. L., To, B., Noufi, R., Prog. Photovolt: Res. Appl. 16 (2008) 235.Google Scholar
2. Lincot, D., Guillemoles, J.F., Taunier, S., Guimard, D., Sicx-Kurdi, J., Chaumont, A., Roussel, O., Ramdani, O., Hubert, C., Fauvarque, J.P., Bodereau, N., Parissi, L., Panheleux, P., Fanouillere, P., Naghavi, N., Grand, P.P., Benfarah, M., Mogensen, P., Kerrec, O., Sol. Energy 77 (2004) 725.Google Scholar
3. Basol, B., Pinarbasi, M., Aksu, S., Wang, J., Matus, Y., Johnson, T., Han, Y., Narasimhan, M. and Metin, B., Proc. 23rd European PVSEC, Valencia, Spain 2008, 2137.Google Scholar
4. Basol, B., Pinarbasi, M., Aksu, S., Freitag, J., Gonzalez, P., Johnson, T., Matus, Y., Metin, B., Narasimhan, M., Nayak, D., Norsworthy, G., Soltz, D., Wang, J., Wang, T., Zolla, H., Proc. 34th IEEE PV Specialists Conference, Philadelphia, 2009, 2310.Google Scholar
5. Pinarbasi, M., Aksu, S., Freitag, J., Boone, T., Zolla, H., Vasquez, J., Nayak, D., Lee, E., Wang, T., Abushama, J., Metin, B., Proc. 35th IEEE PV Specialists Conference, Honolulu, 2010, 169.Google Scholar
6. Pinarbasi, M., Aksu, S., Freitag, J., Boone, T., Zolla, H., Vasquez, J., Nayak, D., Lee, E., Wang, T., Abushama, J., Metin, B., Proc. 25th European PVSEC, Valencia, Spain 2010, 2818.Google Scholar
7. Aksu, S., Wang, J. and Basol, B., Electrochem. and Solid-State Lett., 12, D33 (2009).Google Scholar
8. Aksu, S. and Pinarbasi, M., Proc. 35th IEEE PV Specialists Conference, Honolulu, 2010, June 2010, 794.Google Scholar
9. Staff, K., Brown, M.B., Hider, R.C., Kong, X.L., Friden, P., Jones, S.A., Biomed. Chromatogr. 24, 9, 1015 (2010).Google Scholar
10. Chrysikopoulos, C.V., Kruger, P., “Chelated Indium Activable Tracers for Geothermal Reservoirs”, Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences, Stanford University, Stanford, California, June 1986.Google Scholar
11. Salit, M. L., Turk, G. C., Lindstrom, A. P., Butler, T. A., Beck, C. M. II, Norman, B., Anal. Chem. 73, 4821 (2001).Google Scholar