Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T10:00:35.160Z Has data issue: false hasContentIssue false

Analysis and Optimization of Thin-Film Ferroelectric Phase Shifters

Published online by Cambridge University Press:  10 February 2011

R. R. Romanofsky
Affiliation:
NASA Glenn Research Center, Cleveland OH 44135
F. W. Van Keuls
Affiliation:
Ohio Aerospace Institute, Cleveland OH 44142
J. D. Warner
Affiliation:
NASA Glenn Research Center, Cleveland OH 44135
C. H. Mueller
Affiliation:
NASA Glenn Research Center, Cleveland OH 44135
S. A. Alterovitz
Affiliation:
NASA Glenn Research Center, Cleveland OH 44135
F. A. Miranda
Affiliation:
NASA Glenn Research Center, Cleveland OH 44135
A. H. Qureshi
Affiliation:
Cleveland State University, Cleveland OH 44101
Get access

Abstract

Microwave phase shifters have been fabricated from (YBa2Cu3 O7-δ or Au)/SrTiO3 and Au/BaxSr1−xTiO3 films on LaAlO3 and MgO substrates. These coupled microstrip devices rival the performance of their semiconductor counterparts at Ku- and K-band frequencies. Typical insertion loss for room temperature ferroelectric phase shifters at K-band is ≈5 dB. An experimental and theoretical investigation of these novel devices explains the role of the ferroelectric film in overall device performance. A roadmap to the development of a 3 dB insertion loss phase shifter that would enable a new type of phased array antenna is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Berrou, C., Glavieux, A. and Thitmajshima, P., ICC 1993, pp. 10641070.Google Scholar
2. Budinger, J.M. et al. , IEEE Int'l. Conf. Comm., Montreal, Canada, June 1997.Google Scholar
3. Jensen, C.A., Terry, J.D., and Vanderaar, M., The Implications of Encoder/Modulator/Phased Array Designs for Future Broadband LEO Communications, October, 1997.10.1117/12.301035Google Scholar
4. Ohmori, S., Taira, S., and Austin, M., J. Comm. Res. Lab., Tokyo, Japan, 38 (2), (1991) 217.Google Scholar
5. Collier, D., Microwave Systems News, (1990) 37.Google Scholar
6. Berry, D.G., Malech, R.G., and Kennedy, W.A., IEEE Trans. Ant. Prop., 11 (1963) 645.10.1109/TAP.1963.1138112Google Scholar
7. Romanofsky, R.R., PhD Thesis, Cleveland State University, 1999.Google Scholar
8. Delisio, M.P., Weikle, R.M., and Rutledge, D.B., IEEE rans. MTT, 46 (11) 1949.Google Scholar
9. W-Y, Lin et al. , Ferroelectric Workshop, Puerto Rico, May 1999.Google Scholar
10. VanKeuls, F.W. et al. , IEEE MTT Symp. Digest, (1999) 737.Google Scholar
11. VanKeuls, F.W. et al. , Microwave & Optical Tech. Lett., 20 (1) 53.10.1002/(SICI)1098-2760(19990105)20:1<53::AID-MOP15>3.0.CO;2-L3.0.CO;2-L>Google Scholar
12. VanKeuls, F.W. et al. , Appl. Phys. Lett., 71 (21) 3075.10.1063/1.120251Google Scholar
13. Romanofsky, R.R. and Qureshi, A.H., Intermag 2000, Toronto, Canada, 2000.Google Scholar