Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-04T03:38:00.891Z Has data issue: false hasContentIssue false

Angle-Dependent Polarized Raman Spectroscopy of TIPS Pentacene Single-Crystalline Domains Deposited on Au-Striped Substrates

Published online by Cambridge University Press:  18 May 2015

Norio Onojima
Affiliation:
Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Takeda 4-3-11, Kofu, Yamanashi, 400-8511, Japan
Ayato Nakamura
Affiliation:
Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Takeda 4-3-11, Kofu, Yamanashi, 400-8511, Japan
Hiroki Saito
Affiliation:
Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Takeda 4-3-11, Kofu, Yamanashi, 400-8511, Japan
Norihiro Daicho
Affiliation:
Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Takeda 4-3-11, Kofu, Yamanashi, 400-8511, Japan
Get access

Abstract

6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene) was deposited on SiO2/Si substrates with Au stripes using electrostatic spray deposition (ESD). We observed that crystalline domains on the substrates were preferentially oriented. To elucidate this phenomenon, the correlation between the orientation direction and stripe direction was investigated by angle-dependent polarized Raman spectroscopy. Since the acene planes in TIPS pentacene take an edge-on orientation on the substrates, C-C ring stretch modes can be used to probe the in-plane orientation. We found that the long molecular axis of acene planes is inclined at about 50° or 110° from the stripe direction. This result suggests that the molecular orientation of the crystalline domains can be controlled by the stripes.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Smith, J., Hamilton, R., McCulloch, I., Heeney, M., Anthony, J. E., Bradley, D. D. C., and Anthopoulos, T. D., Synth. Met. 159, 2365 (2009).CrossRefGoogle Scholar
Azarova, N. A., Owen, J. W., McLellan, C. A., Grimminger, M. A., Chapman, E. K., Anthony, J. E., and Jurchescu, O. D., Org. Electron. 11, 1960 (2010).CrossRefGoogle Scholar
Lee, M. W., Ryu, G. S., Lee, Y. U., Pearson, C., Petty, M. C., and Song, C. K., Microelectron. Eng. 95, 1 (2012).CrossRefGoogle Scholar
Sakamoto, K., Ueno, J., Bulgarevich, K., and Miki, K., Appl. Phys. Lett. 100, 123301 (2012).CrossRefGoogle Scholar
Onojima, N., Saito, H., and Kato, T., Org. Electron. 14, 2406 (2013).CrossRefGoogle Scholar
Kim, D. H., Lee, D. Y., Lee, H. S., Lee, W. H., Kim, Y. H., Han, J. I., and Cho, K., Adv. Mater. 19, 678 (2007).CrossRefGoogle Scholar
Becerril, H. A., Roberts, M. E., Liu, Z., Locklin, J., and Bao, Z., Adv. Mater. 20, 2588 (2008).CrossRefGoogle Scholar
He, Z., Chen, J., Sun, Z., Szulczewski, G., and Li, D., Org. Electron. 13, 1819 (2012).CrossRefGoogle Scholar
Akkerman, H. B., Li, H., and Bao, Z., Org. Electron. 13, 2056 (2012).CrossRefGoogle Scholar
Onojima, N., Nishio, N., and Kato, T., Jpn. J. Appl. Phys. 52, 05DB06 (2013).CrossRefGoogle Scholar
Minemawari, H., Yamada, T., Matsui, H., Tsutsumi, J., Haas, S., Chiba, R., Kumai, R., and Hasegawa, T., Nature 475, 364 (2011).CrossRefGoogle Scholar
Nakayama, K., Hirose, Y., Soeda, J., Yosizumi, M., Uemura, T., Uno, M., Li, W., Kang, M. J., Yamagishi, M., Okada, Y., Miyazaki, E., Nakazawa, Y., Nakao, A., Takimiya, K., and Takeya, J., Adv. Mater. 23, 1626 (2011).CrossRefGoogle Scholar
Lee, J. Y., Roth, S., and Park, Y. W., Appl. Phys. Lett. 88, 252106 (2006).CrossRefGoogle Scholar
James, D. T., Kjellander, B. K. C., Smaal, W. T. T., Gelinck, G. H., Combe, C., McCulloch, I., Wilson, R., Burroughes, J. H., Bradley, D. D. C., and Kim, J. –S., ACS NANO 5, 9824 (2011).CrossRefGoogle Scholar
Kühnle, A., Current Opinion in Colloid & Interface Science 14, 157 (2009).CrossRefGoogle Scholar
Kano, M., Minari, T., and Tsukagoshi, K., Appl. Phys. Exp. 3, 051601 (2010).CrossRefGoogle Scholar
Fruchart, O., Klaua, M., Barthel, J., and Kirschner, J., Phys. Rev. Lett. 83, 2769 (1999).CrossRefGoogle Scholar
Jaworek, A., and Sobczyk, A. T., J. Electrostatics 66, 197 (2008).CrossRefGoogle Scholar
Abdellah, A., Fabel, B., Lugli, P., and Scarpa, G., Org. Electron. 11, 1031 (2010).CrossRefGoogle Scholar
Wilhelm, O., Mädler, L., and Pratsinis, S. E., J. Aerosol Sci. 34, 815 (2003).CrossRefGoogle Scholar
Khan, S., Doh, Y. H., Khan, A., Rahman, A., Choi, K. H., and Kim, D. S., Curr. Appl. Phys. 11, S271 (2011).CrossRefGoogle Scholar
Fukuda, T., Asaki, H., Asano, T., Takagi, K., Honda, Z., Kamata, N., Ju, J., and Yamagata, Y., Thin Solid Films 520, 600 (2011).CrossRefGoogle Scholar
Chen, J., Anthony, J., and Martin, D. C., J. Phys. Chem. B 110, 16397 (2006).CrossRefGoogle Scholar
Chen, J., Martin, D. C., and Anthony, J., J. Mater. Res. 22, 1701 (2007).CrossRefGoogle Scholar
Giri, G., Park, S., Vosgueritchian, M., Shulaker, M. M., and Bao, Z., Adv. Mater. 26, 487 (2014).CrossRefGoogle Scholar
James, D. T., Frost, J. M., Wade, J., Nelson, J., and Kim, J. –S., ACS NANO 9, 7983 (2013).CrossRefGoogle Scholar
Givargizov, E. I., Cryst, J.. Growth 310, 1686 (2008).CrossRefGoogle Scholar