Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-13T13:46:39.173Z Has data issue: false hasContentIssue false

Anisotropy in Hybrid Materials: An Alternative Tool for Characterization

Published online by Cambridge University Press:  10 February 2011

V. Dessolle
Affiliation:
Laboratoire de Chimie Structurale Organique (URA 1384), Université Paris Sud, Bât. 410, 91405 Orsay - France
E. Lafontaine
Affiliation:
DGA/CREA 16, Bis Avenue Prieur de la Côte d'Or 91414 Arcueil Cedex - France.
J. P. Bayle
Affiliation:
Laboratoire de Chimie Structurale Organique (URA 1384), Université Paris Sud, Bât. 410, 91405 Orsay - France
P. Judeinstein
Affiliation:
Laboratoire de Chimie Structurale Organique (URA 1384), Université Paris Sud, Bât. 410, 91405 Orsay - France
Get access

Abstract

Hybrid materials presenting mechanical rubbery properties are prepared from silicon alkoxides modified by organic polymers [i.e. poly(propyleneoxide), poly(ethyleneoxide), poly(butadiene) of moderate molecular weight (MW ≈ 3000–4000)]. These materials were characterized by 29Si NMR. They can be swollen by deuterated probes which can be used with 2H NMR to follow the network structure. Under unidirectionnal mechanical strain, uniaxial anisotropy of the samples is obtained and the macroscopic ordering is evidenced by quadrupolar deuterium NMR of swelling probe.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) a) in Better Ceramics Through Chemistry VI, Mat. Res. Symp. Proc., 346, (1994) and references therein. b) in Hybrid Organic-Inorganic Composites, Eds. Mark, J. E., Lee, C. Y.-C. and Bianconi, P.A., ACS Symp. Ser., Washington, DC, 585, (1995).Google Scholar
(2) in Hybrid Organic Inorganic Materials, special issue of New J. Chem., 18, (1994).Google Scholar
(3) a) Novak, B. M., Adv. Mater., 5, 422, (1993). b) U. Schubert, N. Hüsing, A. Lorenz, Chem. Mater., 7, 2010, (1995).Google Scholar
(4) Judeinstein, P., Sanchez, C., J. Mater. Chem., 6, (1996), in press.Google Scholar
(5) Treolar, L. B., The Physics of Rubber Elasticity, Clarendon Press, Oxford, (1975).Google Scholar
(6) Judeinstein, P., Brik, M. E., Bayle, J. P., Courtieu, J., Rault, J., Mat. Res. Symp. Proc., 346, 937, (1994).Google Scholar
(7) Satchell, D. P. N., Satchell, R. S., Chem. Soc. Rev., 4, 231, (1975).Google Scholar
(8) Sharp, K. G., J. Sol-Gel Sci. & Tech., 2, 35, (1994).Google Scholar
(9) Engelhardt, G. and Michel, D., High Resolution Solid State NMR of Silicates and Zeolites, J. Wiley and Sons Ltd., New York, (1987).Google Scholar
(10) Samulski, E. T., Polymer, 26, 177, (1985).Google Scholar
(11) Emsley, J. W., Lindon, J. C., NMR spectroscopy Using Liquid Crystal Solvents, Pergamon Press, Oxford, pp 221257, (1975).Google Scholar
(12) Deloche, B., Beltzung, M., Herz, J., J. Physique - lettres, 43, L763, (1982).Google Scholar
(13) Brik, M. E., Titman, J. J., Bayle, J. P., Judeinstein, P., J. Polym. Sci., Polym. Phys., in press.Google Scholar
(14) Sotta, P., Deloche, B., Herz, J., Polymer, 29, 1171, (1988).Google Scholar
(15) Judeinstein, P., Oliveira, P. W., Krug, H., Schmidt, H., Chem. Phys. Lett., 220, 35, (1994).Google Scholar