Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-18T23:17:34.124Z Has data issue: false hasContentIssue false

Anisotropy of the Porous Silicon Photoluminescence

Published online by Cambridge University Press:  15 February 2011

G. Polisski
Affiliation:
Technische Universität München, Physik Department E16, Garching 85748, Germany
B. Averboukh
Affiliation:
Technische Universität München, Physik Department E16, Garching 85748, Germany
D. Kovalev
Affiliation:
Technische Universität München, Physik Department E16, Garching 85748, Germany
F. Koch
Affiliation:
Technische Universität München, Physik Department E16, Garching 85748, Germany
Get access

Abstract

Polarization memory effect in the porous Si photoluminescence is studied. The anisotropy of the linear polarization degree is found in the samples etched with polarized light-assistance. The effect is explained by the anisotropie in plane distribution of the elongated Si crystallites. Under resonant optical excitation four-fold anisotropy of the photoluminescence polarization, linked to the crystalline axes of the bulk Si substrate, is observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Canham, L.T.. Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2.Schuppler, S., Friedman, S.L. et al. Phys. Rev.B 52, 4910 (1995).Google Scholar
3.Monin, Y., Saviot, L., Champagnon, B., Esnouf, C. and Halimaoui, A.. Thin Solid Films 255, 188 (1995).Google Scholar
4.Delerue, C., Lannoo, M., Allan, G. and Martin, E.. Thin Solid Films, 255, 27 (1995).Google Scholar
5.Read, A.J., Needs, R.J., Nash, K.J., Canham, L.T., Calcott, P.D.J. and Qteish, A.. Phys. Rev. Lett. 69, 1232 (1992).Google Scholar
6.Andrianov, A.V., Kovalev, D.I., Zinov'ev, N.N. and Yaroshetskii, I.D.. JETP Lett. 58, 427 (1993).Google Scholar
7.Koyama, H. and Koshida, N.. Phys. Rev. B 52, 2649 (1995).Google Scholar
8.Gaponenko, S.V., Kononenko, V.K., Petrov, E.V., Germanenko, I.N., Stupak, A.P. and Xie, Y.H.. Appl. Phys. Lett. 67, 3019 (1995).Google Scholar
9.Kovalev, D., Ben Chorin, M., Diener, J., Koch, F., Efros, ALL., Rosen, M., Gippius, M.A. and Tikhodeev, S.G.. Appl. Phys. Lett. 67, 1585 (1995).Google Scholar
10.Lavallard, P. and Suris, R.A., Solid State Commun. 25, 267 (1995).Google Scholar
11.Kovalev, D., Averboukh, B., Ben Chorin, M., Koch, F., Efros, ALL. and Rosen, M.. Phys. Rev. Lett. 77, 2089 (1996).Google Scholar
12.Teschke, O., Alvarez, F., Tessler, L. and Kleinke, M.U.. Appl. Phys. Lett. 63, 1927 (1993).Google Scholar
13.Chuang, S.-F., Collins, S.D. and Smith, R.L.. Appl. Phys. Lett. 55 (1989).Google Scholar
14.Pollisski, G., Andrianov, A.V., Kovalev, D. and Koch, F.. Thin Solid Films, 255, 235 (1996).Google Scholar
15.Smith, R.L. and Collins, S.D.. J. Appl. Phys. 71, Rl (1992).Google Scholar
16.Kovalev, D., Ben Chorin, M, Diener, J., Averboukh, B., Polisski, G. and Koch, F.. To be published.Google Scholar