Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T07:00:49.313Z Has data issue: false hasContentIssue false

Annealing Kinetics of Single Displacement Cascades in Ni: An Atomic Scale Computer Simulation

Published online by Cambridge University Press:  15 February 2011

A. Almazouzi
Affiliation:
EPF Lausanne, CRPP-Fusion Technology Materials, CH-5232 Villigen PSI, Switzerland
M. J. Caturla
Affiliation:
Chemistry and Materials Science Directorate, Lawrence Livermore National Lab. L-268, Livermore CA 94550
T. Diaz de la Rubia
Affiliation:
Chemistry and Materials Science Directorate, Lawrence Livermore National Lab. L-268, Livermore CA 94550
M. Victoria
Affiliation:
EPF Lausanne, CRPP-Fusion Technology Materials, CH-5232 Villigen PSI, Switzerland
Get access

Abstract

In order to describe the long term evolution of the defects produced by a displacement cascade, Molecular dynamics (MD) and Kinetic Monte Carlo (KMC) methods are employed. Using an empirical Ni interatomic potential in MD, the damage resulting from primary knock-on atom (PKA) energies up to 30 keV has been simulated. The annealing kinetics and the fraction of freely migrating defects (FMD) are determined for each single displacement cascade, by a KMC code which is based on a set of parameters extracted mainly from MD simulations. It allows an atomistic study of the evolution of the initial damage over a time scale up to lOOs and the determination of the fraction of the defects that escape the KMC box, compared to those obtained by MD, as function of temperature and PKA energy. It has been found that this fraction depends strongly on the temperature but reaches a saturation value above stage V.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rubia, T. Diaz de la, Ann. Rev. Mater. Sci. 26, 613 (1996)Google Scholar
2. Naundorf, V. and Wollenberger, H., J. Nucl. Mater. 212–215, 226, (1994).Google Scholar
3. Singh, B.N., Golubov, S.I., Trinkaus, H., Serra, A., Osetsky, Yu.N., and Barashev, A.V., J. Nucl. Mater. 251, 107, (1997).Google Scholar
4. Jonsson, M., Caturla, M.J., and Rubia, T. Diaz de la, Phys. Rev. in press.Google Scholar
5. Soneda, N., and Rubia, T. Diaz de la, Philos. Mag. A 78, 995, (1998).Google Scholar
6. Alonso, E., Tang, M., and Rubia, T. Diaz de la, Mater. Res. Soc. Symp. Proc. 473, (1997).Google Scholar
7. Almazouzi, A., Caturla, M.J., Alurralde, M., Rubia, T. Diaz de la, Victoria, M., Nucl. Inst. Meth. B, in press.Google Scholar
8. Rubia, T. Diaz de la, and Guinan, M.W., J. Nucl. Mater. 174, 151, (1990).Google Scholar
9. Cleri, F. and Rosato, V., Phys. Rev. B, 48, 2248, (1993)Google Scholar
10. Proennecke, S., Caro, A., Victoria, M., Rubia, T. Diaz de la and Guinan, M.W., J. Mater. Res. 6, 483 (1991).Google Scholar
11. Bacon, D.J., Calder, A.F. and Gao, F., J. Nucl. Mater. 251, 1, (1997).Google Scholar
12. Norgett, M.J., Robinson, M.T., and Torrens, I.M., Nucl. Eng. Design, 33, 50,(1975).Google Scholar
13. Ehrhart, P., Bornstein, Landolt, New Series III/25, 219, (1993).Google Scholar
14. Woo, Ch., Singh, B.N. and Semenov, A.A., J. Nucl. Mater. 239, 7,(1996).Google Scholar
15. Trinkaus, H., Singh, B.N. and Foreman, A.J.E., J. Nucl. Mater. 251, 172, (1997).Google Scholar