Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T14:20:06.073Z Has data issue: false hasContentIssue false

Anomalous Hall Effect in Gd-implanted Wurtzite AlxGa1-xN High Electron Mobility Transistor Structures

Published online by Cambridge University Press:  01 February 2011

Fang-Yuh Lo
Affiliation:
fangyuhlo@mail.ndhu.edu.twfang-yuh.lo@rub.de, National Dong Hwa University, Department of Physics, Hualien, Taiwan
Alexander Melnikov
Affiliation:
alexander.melnikov@rub.de, Ruhr-Universität Bochum, Lehrstuhl für Angewandte Festkörperphysik, Bochum, Germany
Dirk Reuter
Affiliation:
dirk.reuter@rub.de, Ruhr-Universität Bochum, Lehrstuhl für Angewandte Festkörperphysik, Bochum, Germany
Yvon Cordier
Affiliation:
yc@crhea.cnrs.fr, CNRS-UPR10, Centre de Recherche sur l'Hétéro-Epitaxie et ses Applications, Valbonne, France
Andreas D. Wieck
Affiliation:
andreas.wieck@rub.de, Ruhr-Universität Bochum, Lehrstuhl für Angewandte Festkörperphysik, Bochum, Germany
Get access

Abstract

AlxGa1- xN/GaN high electron mobility transistor (HEMT) structures grown by ammonia-source molecular beam epitaxy (MBE) are focused-ion-beam implanted with 300 keV Gd-ions at room temperature. The two-dimensional electron gas (2DEG) of these HEMT structures is located 27 nm underneath the sample surface. At 4.2 K, current-voltage characteristics across implanted rectangles show that the structures remain conducting up to a Gd-dose of 1×1012 cm-2. Anomalous Hall effect (AHE) is observed at T = 4.2 K for structures implanted with Gd, whose dose is 3×1011 cm-2. Measurements of AHE in the wide temperature range from 2.4 K to 300 K show that the magnetic ordering temperature of these structures is around 100 K. Therefore, these Gd-implanted HEMT structures containing the still conducting 2DEG, which is now embedded in a ferromagnetic semiconductor, open the possibility to polarize the electron spins.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S. und Fasol, G., The Blue Laser Diode, Springer, Berlin (1997).Google Scholar
2. Chen, Q., Asif Khan, M., Yang, J. W., Sun, C. J., Shur, M. S., and Park, H., Appl. Phys. Lett. 69, 794 (1996).Google Scholar
3. Wu, Y.-F., Keller, B. P., Keller, S., Kapolnek, D., Kozodoy, P., Denbaars, S. P., and Mishra, U. K., Appl. Phys. Lett. 69, 1438 (1996).Google Scholar
4. Ambacher, O., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., Murphy, M., Schaff, W. J., Eastman, L. F., Dimitrov, R., Wittmer, L., Stutzmann, M., Rieger, W., and Hilsenbeck, J., J. Appl. Phys. 85, 3222 (1999).Google Scholar
5. Wang, Y. Q. and Steckl, A. J., Appl. Phys. Lett. 82, 502 (2003).Google Scholar
6. Nakanishi, Y., Wakahara, A., Okada, H., Yoshida, A., Ohshima, T., Itoh, H., Nakao, S., Saito, K., and Kim, Y. T., Nucl. Instr. and Meth. in Phys. Res. B 206, 1033 (2003).Google Scholar
7. Wang, K., Martin, R. W., O'Donnell, K. P., Katchkanov, V., Nogales, E., Lorenz, K., Alves, E., Ruffenach, S., and Briot, O., Appl. Phys. Lett. 87, 112107 (2005).Google Scholar
8. Dhar, S., Brandt, O., Ramsteiner, M., Sapega, V. F., and Ploog, K. H., Phys. Rev. Lett. 94, 037205 (2005).Google Scholar
9. Dhar, S., Kammermeier, T., Ney, A., Pérez, L., Ploog, K. H., Melnikov, A., and Wieck, A. D., Appl. Phys. Lett. 89, 062503 (2006).Google Scholar
10. Khaderbad, M. A., Dhar, S., Pérez, L., Ploog, K. H., Melnikov, A., and Wieck, A. D., Appl. Phys. Lett. 91, 072514 (2007).Google Scholar
11. Han, S. Y., Hite, J., Thaler, G. T., Frazier, R. M., Abernathy, C. R., Pearton, S. J., Choi, H. K., Lee, W. O., Park, Y. D., Zavada, J. M., and Gwilliam, R., Appl. Phys. Lett. 88, 042102 (2006).Google Scholar
12. Hejtmánek, J., Knížek, K., Maryško, M., Jirák, Z., Sedmidubský, D., Sofer, Z., Peřina, V., Hardtdegen, H., and Buchal, C., J. Appl. Phys. 103, 07D107 (2008).Google Scholar
13. Dietl, T., Ohno, H., Matsukura, F., Cibert, J., and Ferrand, D., Science 287, 1019 (2000).Google Scholar
14. Dietl, T., Ohno, H., and Matsukura, F., Phys. Rev. B 63, 195205 (2001).Google Scholar
15. Lo, F.-Y., Melnikov, A., Reuter, D., Cordier, Y., and Wieck, A. D., Appl. Phys. Lett. 92, 112111 (2008).Google Scholar
16. Semond, F., Cordier, Y., Grandjean, N., Natali, F., Damilano, B., Vézian, S., and Massies, J., phys. stat. sol. (a) 188, 501 (2001).Google Scholar
17. Courtesy of Ziegler, J. F. and Biersack, J. P., http://www.srim.org/. Google Scholar
18. Consejo, Ch., Contreras, S., Konczewicz, L., Lorenzini, P., Cordier, Y., Skierbiszewski, C., and Robert, J.L., phys. stat. sol. (c) 2, 1438 (2005).Google Scholar
19. Ohno, H., Science 281, 951 (1998).Google Scholar
20. Blundell, S., Magnetism in Condensed Matter (Oxford University Press, 2001), p. 190.Google Scholar