Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T10:05:06.322Z Has data issue: false hasContentIssue false

Antiferromagnetism and onset of Superconductivity in Lanthanum Nickelates

Published online by Cambridge University Press:  21 February 2011

J. Spałek
Affiliation:
Department of Physics Purdue University, West Lafayette, IN 47907
Z. Kakol
Affiliation:
Department of Chemistry Purdue University, West Lafayette, IN 47907
J. M. Honig
Affiliation:
Department of Chemistry Purdue University, West Lafayette, IN 47907
Get access

Abstract

Magnetic moment and resistivity measurements are summarized for the La2−xSrxNiO4 system. They show that the system undergoes a structural phase separation below 70 K. The majority of the sample is antiferromagnetic (AF) below 650 K (for x = 0) or 20 K (for x = 0) or 20 K (for x ≃ 0.2 while the minority phase (≤1% at 4.2 K) is superconducting (SC). An analysis of the results leads to the conclusion that SC and AF coexist in the minority part of the sample; the pairing takes place between 2p holes which propagate through a lattice containing localized 3d moments which, in the ground state, are ordered antiferromagnetically.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bednorz, J. C. and Müller, K. A., Z. Phys. B64, 189 (1986).Google Scholar
[2] Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q., and Chu, C. W., Phys. Rev. Letters 58, 908 (1987).Google Scholar
[3] Schooley, J. F., Hosler, W. R., and Cohen, M. L., Phys. Rev. Letters 12, 474 (1964).Google Scholar
[4] Johnston, D. C., Prakash, H., Zachariasen, W. H., and Viswanathan, R., Mater. Res. Bull. 8, 777 (1973).Google Scholar
[5] Shanks, H. R., Solid State Commun. 15, 753 (1974).Google Scholar
[6] Sleight, A. W., Gillson, J. L., and Bierstedt, P. E., Solid State Commun. 17, 27 (1975).Google Scholar
[7] Tinkham, M. and Lobb, C. J. in Solid State Physics, edited by Ehrenreich, H. and Turnbull, D. (Academic Press, Boston, 1989) Vol.42. pp. 91 ff.Google Scholar
[8] Beyers, R. and Shaw, T. M., in Solid State Physics, edited by Ehrenreich, H. and Turnbull, D. (Academic Press, Boston, 1989) Vol.42., pp. 135 ff.Google Scholar
[9] Hass, K. C., in Solid State Physics, edited by Ehrenreich, H. and Turnbull, D. (Academic Press, Boston, 1989) Vol.42., pp. 213 ff.Google Scholar
[10] Cava, R. J., Batlogg, B., Krajewski, J. J., Farrow, R., Rupp, L. W. Jr., White, A. E., Short, K., Peck, W. F., and Kometani, T., Nature 332, 814 (1988).Google Scholar
[11] Kąkol, Z., Spałek, J., and Honig, J. M., J. Solid State Chem., 79, 288 (1989); and Solid State Commun., in press.Google Scholar
[12] Spałek, J., Kąkol, Z., and Ihonig, J. M., in preparation.Google Scholar
[13] Harrison, H. R., Aragón, R., Keem, J. E., and Honig, J. M. in Inorganic Syntheses, edited by Holt, S. C. (Wiley, New York, 1983) Vol.22, pp. 43 ff.Google Scholar
[14] Schartman, R. and Honig, J. M., submitted for publication.Google Scholar
[15] Rao, C. N. R., Buttrey, D. J., Otsuka, N., Ganguly, P., Harrison, H. R., Sandberg, C. J., and Honig, J. M., J. Solid State Chem. 51, 266 (1984).Google Scholar
[16] Koenitzer, J. W., Schartman, R., and Wittenauer, M., unpublished.Google Scholar
[17] Lander, G. H., Brown, P. J., Spalek, J., and Honig, J. M., to be published.Google Scholar
[18] London, F., Superfluids (Wiley, New York, 1944) Vol.1, Sec. 13.Google Scholar
[19] Blackstead, H., Moser, E. K., Pulling, D. B., and McGinn, P. J., unpublished.Google Scholar
[20] Rao, C. N. R., Ganguli, A. K., and Nagarajan, R., Pramana 32, L177 (1989).Google Scholar
[21] Axe, J., personal communication.Google Scholar
[22] Spałek, J., Phys. Rev. B38, 208 (1988).Google Scholar