Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-29T13:57:58.942Z Has data issue: false hasContentIssue false

Antimony sulfide and Silver antimony sulfide absorbers for thin film solar cells

Published online by Cambridge University Press:  30 May 2012

M. Jesús Capistrán
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autónoma de México Privada Xochicalco S/N, Temixco, Morelos-62580, México.
M.T.S. Nair
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autónoma de México Privada Xochicalco S/N, Temixco, Morelos-62580, México.
P.K. Nair
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autónoma de México Privada Xochicalco S/N, Temixco, Morelos-62580, México.
Get access

Abstract

Thin films of antimony sulfide (Sb2S3) were prepared with different silver-ion content in a chemical deposition bath, and silver antimony sulfide (AgSbS2) was produced through the addition of higher concentrations of silver-ions in the bath. The chemical deposition solution mixture contained antimony trichloride (SbCl3) and sodium thiosulfate (Na2S2O3). For molar ratio, AgNO3:SbCl3, 0.002 – 0.02, XRD patterns of the Sb2S3-Ag films heated at 280 ºC match that of the mineral stibnite (Sb2S3). The optical band gap (Eg) of these films is in the 1.93-1.80 eV range. At higher molar concentrations of Ag, lower is the Eg of the films. Electrical conductivity under illumination (σph) is 7.4x10-5 Ω-1cm-1 for a film with Ag:Sb 0.002 in the bath, which is about three orders of magnitude higher than that of a film prepared without Ag. At Ag:Sb 0.2, the XRD pattern of the heated film shows the presence of Ag3SbS3 and AgSbS2. Single-phase AgSbS2 (cubic miargyrite, a = 0.5652 nm) film is formed for Ag:Sb 0.4 and the film heated at 260 oC. The Eg of the film is 1.75 eV for the Sb2S3/Ag-Sb-S film and 1.68 eV for AgSbS2. Solar cell structures of TCO(SnO2:F)/CdS(200 nm)/Sb2S3(150 nm)/graphite, as well as with Sb2S3-Ag absorbers were developed through sequential chemical deposition. The cells with the colloidal graphite paint on the absorber were heated at 260 ºC for 15 min each. The Voc of the cells are 620-635 mV, with the cell using Sb2S3-Ag (0.004) film showing a Jsc of 2.00 mA/cm2, which is higher than the 1.69 mA/cm2 observed in cells with Sb2S3 absorber. In cells using AgSbS2 absorber, Voc is 490 mV, and Jsc is very low, 0.12 mA/cm2. The present work offers a wider range of absorber materials for thin film and hybrid solar cells.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Madelung, O., Semiconductors: other than Group IV Elements and III-V Compounds, 1 st ed. (Springer-Verlag, Berlin Heidelberg NewYork, 1992) p. 49.Google Scholar
2. Nair, M.T.S., Peña, Y., Campos, J., García, V.M., Nair, P.K., J. Electrochem. Soc. 145, 2113 (1998).Google Scholar
3. Messina, Sarah, Nair, M.T.S., Nair, P.K., J.Phys. D: Appl. Phys. 41, 095112 (2008).Google Scholar
4. Barrios-Salgado, E, Nair, M.T.S, Nair, P.K., Zingaro, R.A., Thin Solid Films 519, 7432 (2011).Google Scholar
5. Moon, Soo-Jin, Itzhaik, Yafit, Yum, Jun-Ho, Zakeeruddin, Shaik M., Hodes, Gary, Grätzel, Michael, J. Phys. Chem. Lett. 1, 1524 (2010).Google Scholar
6. Liu, C.P., Wang, H. E., Ng, T.W., Chen, Z.H., Zhang, W.F., Yan, C., Tang, Y.B., Bello, I., Martinu, L., Zhang, W.J., Jha, S.K., Phys. Status Solidi B 249, 627 (2012).Google Scholar
7. Gui, Ee Ling, Kang, Aik Meng, Pramana, Stevin Snellius, Yantara, Natalia, Mathews, Nripan, Mhaisalkar, Subodh, J. Electrochem. Soc. 159, B247 (2012).Google Scholar
8. Messina, Sarah, Nair, M.T.S., Nair, P.K., J. Electrochem. Soc. 156, H327 (2009).Google Scholar
9. Rodríguez-Lazcano, Y., Nair, M.T.S., Nair, P.K., J. Electrochem. Soc. 152, G635 (2005).Google Scholar
10. Messina, Sarah, Nair, M.T.S., Nair, P.K., Thin Solid Films 515, 5777 (2007).Google Scholar
11. Bindu, K., Nair, M.T.S., Das Roy, T.K., Nair, P.K., Electrochem. Solid State Lett. 9, 195 (2009).Google Scholar
12. Carlin, James F. Jr. in Mineral Commodity Summaries 2011, U.S. Geological Survey (Reston, Virginia, 2011) p.19.Google Scholar
13. Nair, M. T. S., Nair, P. K., Zingaro, R. A., Meyers, E. A., J. Appl. Phys. 75, 1557 (1994).Google Scholar
14. Salim, Siham M., Seddek, M.B., Salem, A.M. and Islam, , J. Appl. Sci. Res. 6, 1352 (2010).Google Scholar
15. Lagowski, J. J., in Modern Inorganic Chemistry (Marcel Dekker, New York, 1973) p. 382.Google Scholar
16. Barrow, G. M., in Physical Chemistry, 3 rd ed. (McGraw-Hill Kogakusha, LTD, Tokyo, 1973) p. 386.Google Scholar
17. Razmara, Morteza, Characterization of temperature-induced phase transition in AgSbS2 phases by HTXRD, DSC, EXAFS and TEM, (International Applied Geological Congress, Islamic Azad University, Mashad Branch, Iran, 2010) pp. 12151226.Google Scholar
18. Boldish, Steven I., White, William B., American Mineralogist 83, 865 (1998).Google Scholar
19. Arato, A., Cárdenas, E., Shaji, S., O’Brien, J.J., Alan Castillo, G., Das Roy, T.K., Krishnan, B., Thin Solid Films 517, 2493 (2009).Google Scholar