Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T13:46:45.009Z Has data issue: false hasContentIssue false

Application of Bogoliubov-de Gennes equations to vortices in Hubbard superconductors

Published online by Cambridge University Press:  16 February 2015

Chumin Wang
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, D.F., México
César G. Galván
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, D.F., México
Luis A. Pérez
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, D.F., México
Get access

Abstract

In this work, the formation of d-wave superconducting magnetic vortex is studied within the Bogoliubov-de Gennes formalism and the generalized Hubbard model, which leads to 2N2 coupled self-consistent equations for a supercell of N×N atoms. These equations determine the spatial variation of the superconducting gap as a function of the electron concentration and electron-electron interactions. The results show that the superconducting states induced by the correlated hopping (Δt3) are more sensitive to the presence of magnetic field than those induced by attractive nearest-neighbor interaction (V). Furthermore, we calculate the electronic specific heat as a function of the temperature for a given applied magnetic field, whose behavior has a qualitative agreement with experimental data.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrikosov, A.A, Rev. Mod. Phys. 76, 975979 (2004).CrossRefGoogle Scholar
de Gennes, P. G., Superconductivity of metals and alloys (Addison-Wesley Pub. Co., New York, 1989).Google Scholar
Pérez, L. A., Millán, J. S., and Wang, C., Int. J. Mod. Phys. B 24, 5229 (2010).CrossRefGoogle Scholar
Dagotto, E., Riera, J., Chen, Y. C., Moreo, A., Nazarenko, A., Alcaraz, F., and Ortolani, F., Phys. Rev. B 49, 3548 (1994).CrossRefGoogle Scholar
Galván, C.G., Pérez, L.A., and Wang, C., Phys. Lett. A 376, 1380 (2012).CrossRefGoogle Scholar
Han, Q., Wang, Z.D., Zhang, L.-Y. and Li, X.-G., Phys. Rev. B 65, 064527 (2002).CrossRefGoogle Scholar
Wang, Y. and MacDonald, A.H., Phys. Rev. B 52, R3876R3879 (1995).CrossRefGoogle ScholarPubMed
Tinkham, M., Introduction to Superconductivity, 2nd Edition (McGraw Hill, New York, 1996) pp. 64.Google Scholar
Wen, H.-H., et al. Phys. Rev. B 72, 134507 (2005).CrossRefGoogle Scholar