Hostname: page-component-6bf8c574d5-9nwgx Total loading time: 0 Render date: 2025-02-22T17:03:14.693Z Has data issue: false hasContentIssue false

The Application of Solid Phase Epitaxy for the Incorporation ofSubstitutional Carbon in Silicon

Published online by Cambridge University Press:  15 February 2011

Jon J. Candelaria
Affiliation:
Materials Research and Strategic Technologies, Motorola Inc., 2200 W. Broadway, Mesa, AZ.
J. K. Watanabe
Affiliation:
Materials Research and Strategic Technologies, Motorola Inc., 2200 W. Broadway, Mesa, AZ.
N. Da Vid Theodore
Affiliation:
Materials Research and Strategic Technologies, Motorola Inc., 2200 W. Broadway, Mesa, AZ.
Richard B. Gregory
Affiliation:
Materials Research and Strategic Technologies, Motorola Inc., 2200 W. Broadway, Mesa, AZ.
Dieter K. Schroder
Affiliation:
Department of Electrical Engineering, Arizona State University, Tempe, AZ.
Lawrence M. Stout
Affiliation:
Department of Electrical Engineering, Arizona State University, Tempe, AZ.
Nigel G. Cave
Affiliation:
Materials Research and Strategic Technologies, Motorola Inc., 2200 W. Broadway, Mesa, AZ.
Get access

Abstract

Carbon was substitutionally incorporated into silicon using ion implantationand solid phase epitaxy (SPE) to regenerate a high quality crystallinesubstrate. Carbon was implanted into Si (100) substrates using a singleimplant of 25 keV ai doses ranging from 1.75 × 1015 to 1.05 × 1016/cm2. After carbon implantation half of thesubstrates were amorphized using a silicon implant. All of the wafers weresubjected to a 700°C anneal in N2 ambient for 30 Minutes toinduce SPE regrowth of the implanted regions. FTIR, SIMS, RBS, and TEM wereused to characterize the samples. Results indicate that carbon wassubstitutionally incorporated into the silicon lattice, but that some carbondid precipitate to form silicon carbide. Post-amorphization improvedregrowth of implanted regions in lower dose implanted wafers. ElectricalMeasurements on diode structures indicate that the band gap was reduced forcarbon incorporation at these concentrations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Posthill, J. B., Rudder, R. A., Hattengady, S. V., Fountain, G. G., and Markunas, R. J., Appl. Phys. Lett. 56 (8), 734 (1990).Google Scholar
2. Iyer, S. S., Eberl, K., Goorsky, M. S., LeGoues, F. K., Tsang, J. C., and Cardone, F., Appl. Phys. Lett. 60 (3), 356 (1992).Google Scholar
3. Eberl, K., Iyer, S. S., Tsang, J. C., Goorsky, M. S., and Legoues, F. K., J. Vac. Sci. Tech. B 10 (2), 932 (1992).Google Scholar
4. Tsang, J. C., Eberl, K., Zollner, S., and Iyer, S. S., Appl. Phys. Lett. 61, 961 (1992).Google Scholar
5. Powell, A. R., Eberl, K., LeGoues, F. E., Ek, B. A., and Iyer, S. S., J. Vac. Sci. Tech. B11 (3), 1064 (1993).Google Scholar
6. Strane, J. W., Edwards, W. J., Stein, H. S., Lee, S. R., Doyle, B. L., Picraux, S. T., and Mayer, J. W. in Evolution of Surface and Thin Film Microstructiire edited by. Atwater, H. A., Chason, E., Grabow, M., Lagally, M. (Mater. Res. Soc. Proc. 280, Pittsburgh, PA, 1992) pp. 609.Google Scholar
7. Soref, R. A., J. Appl. Phys. 70, 2470 (1991).Google Scholar
8. Demkov, A. A. and Sankey, O. F., Phys. Rev. B, 48, 2207 (1993).Google Scholar