Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-01T12:41:51.406Z Has data issue: false hasContentIssue false

Application of the Helium Ion Microscope as a Sculpting Tool for Nanosamples

Published online by Cambridge University Press:  31 July 2012

Maria Rudneva
Affiliation:
Delft University of Technology, Kavli Institute of Nanoscience, Lorentzweg 1,2628 CJ Delft, The Netherlands.
Emile van Veldhoven
Affiliation:
TNO - van Leeuwenhoek Laboratory, Stieltjesweg 1, 2826 CK Delft, The Netherlands.
Sairam Malladi
Affiliation:
Delft University of Technology, Kavli Institute of Nanoscience, Lorentzweg 1,2628 CJ Delft, The Netherlands.
Diederik Maas
Affiliation:
TNO - van Leeuwenhoek Laboratory, Stieltjesweg 1, 2826 CK Delft, The Netherlands.
Henny W. Zandbergen
Affiliation:
Delft University of Technology, Kavli Institute of Nanoscience, Lorentzweg 1,2628 CJ Delft, The Netherlands.
Get access

Abstract

In this paper we propose a few helium ion microscope (HIM)-based methods for sample preparation and modification. In particular we report the use of the HIM to make thin wedge SrTiO3 samples without significant artifacts, the possibility to reshape thin metal lines on an electron transparent membrane and the new method of HIM sample preparation by in situ heating of the samples during He-beam illumination.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ward, B. W., Helium ion microscope: A new tool for nanoscale microscopy and metrology. J. Vac. Sci. Technol. B: Microelectronics and Nanometer Structures, 2006. 24(6): p. 28712874.10.1116/1.2357967Google Scholar
2. Bell, D. C., Contrast Mechanisms and Image Formation in Helium Ion Microscope. Microscopy and Microanalysis, 2009. 15(2): p 147153.10.1017/S1431927609090138Google Scholar
3. Postek, M. T., et al. ., Review of current progress in nanometrology with the helium ion microscope. Meas. Sci. Technol., 2011. 22(2).10.1088/0957-0233/22/2/024004Google Scholar
4. Maas, D.J., van der Drift, E., van Veldhoven, E., Meessen, J., Rudneva, M., and Alkemade, P.F.A., Nano-engineering with a focused helium ion beam, MRS Proceedings (2011), 1354–p33.10.1557/opl.2011.1407Google Scholar
5. Sidorkin, V., et al. ., Sub-10-nm nanolithography with a scanning helium beam, J. Vac. Sci. Technol. B: Microelectronics and Nanometer Structures, 2009. 27(4): p L18L20.10.1116/1.3182742Google Scholar
6. Winston, D., et al. ., Scanning-helium-ion-beam lithography with hydrogen silsesquioxane resist. J. Vac. Sci. Technol. B: Microelectronics and Nanometer Structures, 2009. 27(6): p. 27022706.10.1116/1.3250204Google Scholar
7. Maas, D.J., et al. ., Nanofabrication with a helium ion microscope. SPIE Metrology, Inspection, and Process Control for Microlithography XXIV 2010. 7638: p. 763814.10.1117/12.862438Google Scholar
8. Lemme, M. C., et al. ., Etching of graphene devices with a helium ion beam. ACS Nano, 2009. 3(9): p. 26742676 10.1021/nn900744zGoogle Scholar
9. Yang, J., et al. ., Rapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection. Nanotechnology, 2011. 22: p. 285310.10.1088/0957-4484/22/28/285310Google Scholar
10. Livengood, R., et al. ., Subsurface damage from helium ions as a function of dose, beam energy, and dose rate. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2009. 27(6): p. 32443249.10.1116/1.3237101Google Scholar
11. Rue, C., et al. ., Low keV FIB Applications for Circuit Edit. ISTFA2007 (ASM International 2007): p. 312318 Google Scholar
12. Raineri, V., et al. ., Radiation damage and implanted He atoms interaction during void formation in silicon, Appl. Phys. Lett, 1997. 71(12)10.1063/1.119330Google Scholar
13. Ziegler, J. F., et al. ., SRIM - The Stopping and Range of Ions in Matter, (2008). SRIM Co Google Scholar
14. Alkemade, P. F. A et al. ., Imaging and nanofacrication with the Helium Ion Microscope of the Van Leeuwenhoek Laboratory in Delft, Scanning, 2012. 34(2) p. 90100 10.1002/sca.21009Google Scholar
15. van Huis, M. A., et al. ., Atomic imaging of phase transitions and morphology transformation in nanocrystals. Adv. Mater, 2009. 21; o 49924995 10.1002/adma.200902561Google Scholar
16. da Silva, D., et al. ., Formation of bubbles and extended defects in He implanted (1 0 0) Si at elevated temperatures. Nuclear Instruments and Methods in Physics Research B, 2004. 219220: p 713717.10.1016/j.nimb.2004.01.148Google Scholar
17. David, M. L., et al., Effect of implant temperature on defects created using high fluence of helium in silicon; J. Appl. Phys. 2003. 93(3): p. 1438.10.1063/1.1531814Google Scholar
18. Jia, C. L., et al. ., Atomic-scale analysis of the oxygen configuration at SrTiO3 . Phys Rev Lett., 2005. 95(22): p. 225506.10.1103/PhysRevLett.95.225506Google Scholar
19. Szot, K., et al. ., Localized metallic conductivity and self-healing during thermal reduction of SrTiO3 . Phys. Rev. Lett., 2002. 88: p. 075508.10.1103/PhysRevLett.88.075508Google Scholar
20. Haeni, J. H., et al. ., Room-temperature ferroelectricity in strained SrTiO3 . Nature (London), 2004. 430: p. 758.10.1038/nature02773Google Scholar
21. Rudneva, M., et al. ., In-situ transmission electron microscopy imaging of electromigration in Pt nanowires. Microscopy and Microanalysis, 2012 Google Scholar
22. Gao, B., et al. ., In situ transmission electron microscopy imaging of grain growth in a platinum nanobridge induced by electric current annealing. Nanotechnology, 2011. 22: p.205705 10.1088/0957-4484/22/20/205705Google Scholar
23. Reutov, V. F., et al. ., Formation of ordered helium pores in amorphous silicon subjected to low-energy helium ion irradiation. Tech Phys, 2003. 48(1): p. 7378.10.1134/1.1538730Google Scholar
24. Jung, P., Diffusion of implanted helium in Si and SiO2 . Nuclear Instruments and Methods in Physics Research B, 1994. 91(1-4); p. 362365.10.1016/0168-583X(94)96249-9Google Scholar