Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T07:05:37.907Z Has data issue: false hasContentIssue false

Applications of Molecular Dynamics Simulations to Sol-Gel Processing

Published online by Cambridge University Press:  28 February 2011

S. H. Carofalini
Affiliation:
Department of Ceramics, Rutgers University, Piscataway, NJ 08854
H. Melman
Affiliation:
Department of Ceramics, Rutgers University, Piscataway, NJ 08854
Get access

Abstract

The molecular dynamics computer simulation technique has been used to study silicic acid and pyrosilicic acid molecules (H4 SiO4 and H6 Si 2 O7, respectively). The structure of the simulated molecules are compared to those found by molecular orbital calculations as well as structures inferred from silicate hydrates. The potentials used to simulate the molecules were also used in simulations of bulk silicates and compared with experimental data. Results indicate good correlation.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gibbs, G.V., Amer. Mineral 67, 421 (1982).Google Scholar
2. Gibbs, G.V., Meagher, E.P., Newton, E.P., , M.D., and Swanson, E.K., in Structure and Bonding in Crystals, edited by O'Keeffe, M. and Navrotsky, A. (Academic Press, New York, 1981), 1, p. 195.Google Scholar
3. O'Keeffe, E.J., Domenges, B., and Gibbs, G.V., J. Phys. Chem. 89, 2304 (1985).CrossRefGoogle Scholar
4. Rahman, A., Phys. Rev. 136, A405 (1964).Google Scholar
5. Woodcock, L.V., Angell, C.A., and Cheeseman, P., J. Chem. Phys. 65, 1565 (1976).Google Scholar
6. Garofalini, S.H., J. Chem. Phys. 78, 2069 (1983).Google Scholar
7. Soules, T.F., J. Chem. Phys. 71, 4570 (1982).Google Scholar
8. Garofalini, S.H., J. Chem. Phys. 76, 3189 (1982).Google Scholar
9. Garofalini, S.H., J. Non-Chryst. Solids 63, 337 (1984).CrossRefGoogle Scholar
10. Gibbs, G.V., Hamil, M.M., Louisnathan, S.J., Bartell, L.S., and Yow, H., Amer. Mineral 57, 1578 (1972).Google Scholar
11. Garofalini, S.H., presented at the Pacific Coast Meeting of the American Ceramic Society, San Francisco, CA, 1984.Google Scholar
12. McCune, R.C., Anal. Chem. 51, 1249 (1980).Google Scholar
13. Iler, R.K., The Chemistry of Silica (John Wiley and Sons, New York, 1979).Google Scholar
14. Pantano, C.G., Kelso, J.F., and Suscavage, M.J., in Advances Materials Characterization, edited by Rossington, D.R., Condrate, R.A., and Snyder, R.L. (Plenum, 1983).Google Scholar
15. Levine, S.M. and Garofalini, S.H., Defects in Glass, MRS 1985.Google Scholar
16. Levine, S.M. and Garofalini, S.H., submitted to J. Chem. Phys.Google Scholar
17. Rosenthal, A. and Garofalini, S.H., submitted to J. Non-Cryst. Sol.Google Scholar
18. Soules, T.F. and Busbey, R.F., J. Chem. Phys. 75, 969 (1981).Google Scholar
19. Garofalini, S.H. and Levine, S.M., J. Am. Ceram. Soc. 68, 376 (1985).Google Scholar
20. a. Stillinger, F.H. and Rahman, A., J. Chem. Phys. 68, 666 (1978). b. A. Rahman, F.H. Stillinger, and H.L. Lemberg, J. Chem. Phys. 63, 5223 (1975).Google Scholar
21. Peri, J.B., J. Phys. Chem. 70, 2937 (1966).Google Scholar
22. Newton, M.D. and Gibbs, G.V., Phys. Chem. Minerals 6, 221 (1980).Google Scholar
23. Newton, M.D., O'Keeffe, M., and Gibbs, G.V., Phys. Chem. Minerals 6, 305 (1980).Google Scholar
24. O'Keeffe, M. and Gibbs, G.V., J. Chem. Phys. 81, 876 (1984).Google Scholar
25. Michalske, T.A. and Bunker, B.C., J. Appl. Phys. 56, 2686 (1984).Google Scholar