Hostname: page-component-5f745c7db-q8b2h Total loading time: 0 Render date: 2025-01-06T06:56:15.141Z Has data issue: true hasContentIssue false

Applications of Multiple Scattering Theory to Electron Spectroscopy

Published online by Cambridge University Press:  25 February 2011

P J Durham*
Affiliation:
SERC Daresbury Laboratory, Warrington WA4 4AD, England
Get access

Abstract

Because it gives direct and convenient access to the Green's function, multiple scattering theory (MST) provides a powerful machinery for the calculation of I particle observables in general and electron spectroscopies in particular.

The two techniques in which multiple scattering methods have made the biggest impact areangle-resolved photoemission and x-ray spectroscopy (absorption and emission); here the essential point is that MST allows experimental data to be analysed and modelled on the same footing as calculations of the underlying electronic structure, for both ordered and disordered systems. Applications in these areas are briefly reviewed, drawing attention to the two outstanding current deficiencies of the methodology (the use of density functional theory to describe excited states and the approximate — muffin-tin — form of the effective 1—electron potential) as well as its successes.

Current developments, particularly the treatment of relativistic and magnetic systems, the possibilities opened up by third-generation synchrotron radiation sources, and the use of parallel computing techniques, are mentioned.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Himpsel, F.J., Adv. Phys. 32, 1(1983).Google Scholar
[2] Durham, P.J. in “The Electronic Structure of Complex Systems”, Phariseau, P. and Temmerman, W.M. (eds.), Plenum (1984).Google Scholar
[3] Faulkner, J.S. and Stocks, G.M., Phys. Rev. B21, 3222(1980).Google Scholar
[4] Durham, P.J., J. Phys. F: Metal Phys. 11, 2475 (1981).CrossRefGoogle Scholar
[5] Durham, P.J., Ghaleb, D., Gyorffy, B.L., Hague, C.F., Mariot, J.-M., Stocks, G.M. and Temmerman, W.M., J. Phys. F: Metal Phys. 9, 1319 (1979).Google Scholar
[6] Durham, P.J., Gyorffy, B.L. and Pindor, A.J., J. Phys. F: Metal Phys. 10 661 (1980).CrossRefGoogle Scholar
[7] Pendry, J.B., Surface Sci. 57,679 (1976); J.F.L.Hopkinson, J.B.Pendry and D.J. Titterington, Comp. Phys. Comm. 19, 69 (1980).Google Scholar
[8] Pendry, J.B., “Low Energy Electron Diffraction”, Academic Press (1974).Google Scholar
[9] Seib, D.H. and Spicer, W.E., Phys. Rev. B2, 1676(1970).CrossRefGoogle Scholar
[10] Allen, N.K., Durham, P.J., Gyorffy, B.L. and Jordan, R.G., J. Phys. F: Metal Phys. 13, 223 (1983).Google Scholar
[11] Ling, D.T., Miller, J.N., Lindau, I., Spicer, W.E. and Stefan, P.M., Surface Sci. 74 Google Scholar
[12] Durham, P.J., Jordan, R.G., Sohal, G.S. and Wille, L.T., Phys. Rev. Lett. 53, 2038 (1984).Google Scholar
[13] Kisker, E., J. Magn. Magn. Mat. 45, 23 (1984).CrossRefGoogle Scholar
[14] Durham, P.J., J. Magn. Magn. Mat. 45, 38 (1984).Google Scholar
[15] Staunton, J., Gyorffy, B.L., Pindor, A.J., Stocks, G.M. and Winter, H., J. Magn. Magn. Mat. 45, 15 (1984); V.Korenman and R.E. Prange, Phys. Rev. Lett. 53, 186 (1984).Google Scholar
[16] Scheidt, H., Globl, M., Dose, V. and Kirschner, J., Phys. Rev. Lett. 51, 1688 (1983).Google Scholar
[17] Haines, E.M., Clauberg, R. and Feder, R., Phys. Rev. Lett. 54, 932 (1985).Google Scholar
[18] Ginatempo, B., Durham, P.J. and Gyorffy, B.L., J. Phys. CM 1, 6483 (1989).Google Scholar
[19] Eyers, A., Schafers, F., Schonhense, G., Heinzmann, U., Oepen, P., Hunlich, K., Kirschner, J. and Borstel, G., Phys. Rev. Lett. 52, 1559 (1984).CrossRefGoogle Scholar
[20] Ginatempo, B., Durham, P.J., Gyorffy, B.L. and Temmerman, W.M., Phys. Rev. Lett. 54, 1581 (1985).Google Scholar
[21] Liebsch, A., Phys. Rev. Lett. 32, 1203 (1974).Google Scholar
[22] Spanjaard, D., Jepson, D.W. and Marcus, P.M., Phys. Rev. B15, 1728(1977).Google Scholar
[23] Velicky, B. and Kudrnovsky, J., Proceedings of International Symposium on Surfaces, Bechyne, Elsevier (1980).Google Scholar
[24] eg. Muller, J.E., Jepsen, O., Andersen, O.K. and Wilkins, J.W., Phys. Rev. Lett. 40, 720 (1978).CrossRefGoogle Scholar
[25] eg. Durham, P.J., Temmerman, W.M. and Begley, A.M., in “Auger Spectroscopy and Electronic Structure”, Cubiotti, G., Mondio, G. and Wandelt, K. (eds.), Springer Series in Surface Science Vol.18 (1989).Google Scholar
[26] Blake, R.J., Collins, I.R. and Andrews, P.T. (private communication).Google Scholar
[27] Konig, U., Weinberger, P., Redinger, J., Erschbaumer, H. and Freeman, A.J., Phys. Rev. B39, 7492(1989).Google Scholar
[28] See contributions to this Symposium.Google Scholar
[29] eg. Almbladh, C.-O. and Hedin, L. in “Handbook on Synchrotron Radiation”, Koch, E.-E. (ed.), North-Holland (1983).Google Scholar
[30] Liebsch, A., Phys. Rev. Lett. 43, 1431 (1979); G.Treglia, F.Ducastelle and D.Spanjaard, J. Physique 41, 281 (1980); M.A.Hoyland and R.G. Jordan, J. Phys. CM 3, 1337 (1991).Google Scholar
[31] eg. Godby, R.W., Schluter, M. and Sham, L.J., Phys. Rev. Lett. 56, 2415 (1986).Google Scholar
[32] Almbladh, C.-O., Phys. Rev. B34, 3798(1986).CrossRefGoogle Scholar
[33] Baumgarten, L., Schneider, C.M., Petersen, H., Schafers, F. and Kirschner, J., Phys. Rev. Lett. 65, 492 (1990).Google Scholar
[34] Strange, P., Durham, P.J. and Gyorffy, B.L., to be published (1991).Google Scholar
[35] “Parallel Supercomputing at Daresbury” (1991), available from TCS Division, Daresbury Laboratory, Warrington WA4 4AD, England.Google Scholar