Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-14T17:13:05.729Z Has data issue: false hasContentIssue false

The Applications of Neutron Scattering Methods to the Study of High-Temperature Protonic Conductors

Published online by Cambridge University Press:  15 February 2011

T. J. Udovic
Affiliation:
NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Dr., Stop 8562, Gaithersburg, Maryland 20899-8562, USA
T. Yildirim
Affiliation:
NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Dr., Stop 8562, Gaithersburg, Maryland 20899-8562, USA
C. Karmonik
Affiliation:
NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Dr., Stop 8562, Gaithersburg, Maryland 20899-8562, USA Department of Materials and Nuclear Engineering, University of Maryland, College Park, Maryland, 20742, USA
Q. Huang
Affiliation:
NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Dr., Stop 8562, Gaithersburg, Maryland 20899-8562, USA Department of Materials and Nuclear Engineering, University of Maryland, College Park, Maryland, 20742, USA
Get access

Abstract

Perovskite-based high-temperature protonic conductors have generated increased interest because of their potential use in such areas as solid-oxide fuel-cell technology. In this paper, we outline the utility of neutron scattering methods in conjunction with first-principles total-energy calculations for characterizing the proton dynamics in these materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Matzke, T., Stimming, U., Karmonik, C., Soetratmo, M., Hempelmann, R., and Guethoff, F., Solid State Ionics 86–88, 621 (1996).Google Scholar
[2] Lindstrom, R. M, J. Res. Natl. Inst. Stand. Technol. 98, 127 (1993).Google Scholar
[3] Karmonik, C., Udovic, T. J., Paul, R. L., Rush, J. J., Lind, K., and Hempelmann, R., Solid State Ionics 109, 207 (1998).Google Scholar
[4] Bacon, G. E. Neutron Diffraction, 3rd Ed., Oxford University Press, Oxford (1975).Google Scholar
[5] Bée, M., Quasielastic Neutron Scattering-Principles and Applications in Solid State Chemistry, Biology and Materials Science, IOP Publishing Ltd, Bristol (1988).Google Scholar
[6] Hempelmann, R., Karmonik, C., Matzke, T., Cappadonia, M., Stimming, U., Springer, T., and Adams, M. A., Solid State Ionics 77, 152 (1995).Google Scholar
[7] Karmonik, C., Hempelmann, R., Matzke, T., and Springer, T., Z. Naturforsch. 50a, 539 (1995).Google Scholar
[8] Copley, J. R. D. and Udovic, T. J., J. Res. Natl. Inst. Stand. Technol. 98, 71 (1993).Google Scholar
[9] Neumann, D. A. and Hammouda, B., J. Res. Natl. Inst. Stand. Technol. 98, 89 (1993).Google Scholar
[10] Spectrochimica Acta 48A, (1992).Google Scholar
[11] Karmonik, C., Yildirim, T., Udovic, T. J., Rush, J. J., and Hempelmann, R., Mat. Res. Soc. Symp. Proc. 496, 199 (1998).Google Scholar
[12] Yildirim, T. et al., to be published.Google Scholar