Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T00:51:36.795Z Has data issue: false hasContentIssue false

Approaching the Lambertian Limit in Randomly Textured Thin-Film Solar Cells

Published online by Cambridge University Press:  10 May 2012

Falk Lederer
Affiliation:
Friedrich-Schiller Universität Jena, Institute of Condensed Matter Theory and Solid State Optics and Abbe Center of Photonics, Max-Wien-Platz 1, 07743 Jena, Germany
Stephan Fahr
Affiliation:
Friedrich-Schiller Universität Jena, Institute of Condensed Matter Theory and Solid State Optics and Abbe Center of Photonics, Max-Wien-Platz 1, 07743 Jena, Germany
Carsten Rockstuhl
Affiliation:
Friedrich-Schiller Universität Jena, Institute of Condensed Matter Theory and Solid State Optics and Abbe Center of Photonics, Max-Wien-Platz 1, 07743 Jena, Germany
Thomas Kirchartz
Affiliation:
Imperial College London, Blackett Laboratory of Physics, South Kensington, London SW7 2AZ, UK
Get access

Abstract

The Lambertian limit represents a benchmark for the enhancement of the effective path length in solar cells, which is important as soon as the absorption length exceeds the absorber thickness. In previous publications it has been shown that either extremely thick or extremely thin solar cells can be driven close to this limit by exploiting up to date photon management. In this contribution we show that the Lambertian limit can also be achieved with thin-film solar cells based on amorphous silicon for practically relevant absorber thicknesses. Departing from superstrates, which are currently incorporated into state-of-the-art thin-film solar cells, we show that their topology has simply to be downscaled to typical feature sizes of about 100 nm in order to achieve this goal. By systematically studying the impact of the modulation height and the lateral feature sizes of the incorporated textures and of the absorber thickness we are able to deduce intuitive guidelines how to approach the Lambertian limit in randomly textured thin-film solar cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ghebrebrhan, M., Bermel, P., Avniel, Y., Joannopoulos, J. D., and Johnson, S. G., “Global optimization of silicon photovoltaic cell front coatings,” Opt. Express 17, 75057518 (2009).Google Scholar
2. Fahr, S., Ulbrich, U., Kirchartz, T., Rau, U., Rockstuhl, C., and Lederer, F., “Rugate filter for light-trapping in solar cells,” Opt. Express 16, 93329343 (2008).Google Scholar
3. Strümpel, C., McCann, M., Beaucarne, G., Arkhipov, V., Slaoui, A., Švrček, V., del Cañizo, C., and Tobias, I., “Modifying the solar spectrum to enhance silicon solar cell efficiency-An overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238249 (2007).Google Scholar
4. Duché, D., Escoubas, L., Simon, J.-J., Torchio, P., Vervisch, W., and Flory, F., “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92, 193, 310 (2008).Google Scholar
5. Kroll, M., Fahr, S., Helgert, C., Rockstuhl, C., Lederer, F., and Pertsch, T., “Employing dielectric diffractive structures in solar cells - a numerical study,” phys. stat. sol. (a) 205(12), 27772795 (2008).Google Scholar
6. Chen, F.-C., Wu, J.-L., and Hung, Y., “Spatial redistribution of the optical field intensity in inverted polymer solar cells,” Appl. Phys. Lett. 96(19), 193304 (2010).Google Scholar
7. Akimov, Y. A., Koh, W. S., Sian, S. Y., and Ren, S., “Nanoparticle-enhanced thin film solar cells: Metallic or dielectric nanoparticles?” Appl. Phys. Lett. 96(7), 073111 (2010).Google Scholar
8. Rockstuhl, C., Fahr, S., and Lederer, F., “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).Google Scholar
9. Rockstuhl, C., Fahr, S., Bittkau, K., Beckers, T., Carius, R., Haug, F.-J., Söderström, T., Ballif, C., and Lederer, F., “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18(S3), A335A341 (2010).Google Scholar
10. Yablonovitch, E., “Statistical ray optics,” J. Opt. Soc. Am. (1917-1983) 72, 899907 (1982).Google Scholar
11. Aberle, A. G., “Thin-film solar cells,” Thin Solid Films 517, 47064710 (2009).Google Scholar
12. Deckman, H. W., Wronski, C. R., Witzke, H., and Yablonovitch, E., “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42(11), 968970 (1983).Google Scholar
13. Tiedje, T., Abeles, B., Cebulka, J. M., and Pelz, J., “Photoconductivity enhancement by light trapping in rough amorphous silicon,” Appl. Phys. Lett. 42(8), 712714 (1983).Google Scholar
14. Fahr, S., Kirchartz, T., Rockstuhl, C., and Lederer, F., “Approaching the Lambertian Limit in Randomly Textured Thin-Film Solar Cells,” Opt. Express 19(S4), A865A874 (2011).Google Scholar
15. Steinhauser, J., Faÿ, S., Oliveira, N., Vallat-Sauvain, E., and Ballif, C., “Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films,” Appl. Phys. Lett. 90(14), 142107 (2007).Google Scholar
16. Berginski, M., Hüpkes, J., Schulte, M., Schöpe, G., Stiebig, H., Rech, B., and Wuttig, M., “The effect of front ZnO: Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys. 101(7), 074903 (2007).Google Scholar
17. Noponen, E. and Turunen, J., “Eigenmode method for electromagnetic synthesis of diffractive elements with three-dimensional profiles,” J. Opt. Soc. Am. A 11(9), 24942502 (1994).Google Scholar
18. Li, L., “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14(10), 27582767 (1997).Google Scholar
19. Southwell, W. H., “Gradient-index antireflection coatings,” Opt. Lett. 8(11), 584586 (1983).Google Scholar
20. Yu, Z., Raman, A., and Fan, S., “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U. S. A. 107(41), 1749117496 (2010).Google Scholar
21. Bittkau, K., Beckers, T., Fahr, S., Rockstuhl, C., Lederer, F., and Carius, R., “Nanoscale investigation of light-trapping in a-Si:H solar cell structures with randomly textured interfaces,” phys. stat. sol. (a) 205(12), 27662776 (2008).Google Scholar
22. Rockstuhl, C., Lederer, F., Bittkau, K., and Carius, R., “Light localization at randomly textured surfaces for solar-cell applications,” Appl. Phys. Lett. 91(17), 171104 (2007).Google Scholar
23. Rockstuhl, C., Fahr, S., Lederer, F., Bittkau, K., Beckers, T., and Carius, R., “Local versus global absorption in thin-film solar cells with randomly textured surfaces,” Appl. Phys. Lett. 93(6), 061105 (2008).Google Scholar
24. Bittkau, K., Carius, R., and Lienau, C., “Guided optical modes in randomly textured ZnO thin films imaged by near-field scanning optical microscopy,” Phys. Rev. B 76(3), 035330 (2007).Google Scholar
25. Deparis, O., Vigneron, J. P., Agustsson, O., and Decroupet, D., “Optimization of photonics for corrugated thin-film solar cells,” J. Appl. Phys. 106(9), 094505 (2009).Google Scholar
26. Han, S. E. and Chen, G., “Toward the Lambertian Limit of Light Trapping in Thin Nanostructured Silicon Solar Cells,” Nano Lett. 10(11), 46924696 (2010).Google Scholar
27. ASTM Standard G173-03, “Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface,” West Conshohocken (PA): American Society for Testing and Materials (2003). Available from: http://www.astm.org.Google Scholar
28. Green, M. A., “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovoltaics 10(4), 235241 (2002).Google Scholar
29. Battaglia, C., Escarré, J., Söderström, K., Erni, L., Ding, L., Bugnon, G., Billet, A., Boccard, M., Barraud, L., de Wolf, S., Haug, F., Despeisse, M., and Ballif, C., “Nanoimprint Lithography for High-Efficiency Thin-Film Silicon Solar Cells,” Nano Lett. 11(2), 661665 (2011).Google Scholar
30. Jin, G., Escarré, J., Widenborg, P. C., Campbell, P., and Varlamov, S., “Lambertian matched absorption enhancement in PECVD poly-Si thin film on aluminum induced textured glass superstrates for solar cell applications,” Prog. Photovoltaics 18(8), 582589 (2010).Google Scholar
31. Franken, R. H., Stolk, R. L., Li, H., van der Werf, C. H. M., Rath, J. K., and Schropp, R. E. I., “Understanding light trapping by light scattering textured back electrodes in thin film n-i-p-type silicon solar cells,” J. Appl. Phys. 102(1), 014503 (2007).Google Scholar