Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T05:57:35.262Z Has data issue: false hasContentIssue false

Aromatic Hydrocarbon Detection Using Self-Assembled Monolayer Coated Cantilevers

Published online by Cambridge University Press:  01 February 2011

Andrew E Riley
Affiliation:
andrew.riley@exxonmobil.com, ExxonMobil, Corporate Strategic Research, 1545 Route 22 East, Annandale, NJ, 08801, United States
Alan M Schilowitz
Affiliation:
alan.m.schilowitz@exxonmobil.com, ExxonMobil, 1545 Route 22 East, Annandale, NJ, 08801, United States
Dalia G Yablon
Affiliation:
dalia.G.yablon@exxonmobil.com, ExxonMobil, 1545 Route 22 East, Annandale, NJ, 08801, United States
Mark M Disko
Affiliation:
Mark.m.disko@exxonmobil.com, ExxonMobil, 1545 Route 22 East, Annandale, NJ, 08801, United States
Get access

Abstract

The presence of toluene and xylene is sensed via surface stress induced deflection of microcantilevers functionalized with self-assembled monolayers (SAMs). Monolayers are formed on gold coated cantilevers using alkanethiols, mercaptanols, and aromatic thiols. These coatings create a variety of chemical functionalities at the cantilever surface, which impact the interactions between target molecules and the cantilever. The differential responses of the cantilevers are investigated as a means to selectively detect aromatic vapors at parts per thousands (ppth) levels.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lavrik, N. V., Sepaniak, M. J., Datskos, P. G., Rev. Sci. Inst. 75, 2229. (2004)Google Scholar
2 Fritz, J., Baller, M. K., Lang, H. P., Strunz, T., Meyer, E., Guntherdot, H. J., Delamarche, E., Gerber, Ch., Gimzewski, J. K.. Langmuir. 16, 9694. (2000)Google Scholar
3 Ji, H., Thundat, T.. Biosensors & Bioelectronics. 17, 337. (2002)Google Scholar
4 Battiston, F. M., Ramseyer, J. P., Lang, H. P., Baller, M. K., Gerber, Ch., Gimzewski, J. K., Meyer, E., Guntherodt, H. J.. Sens. Actu. B. 77, 122. (2001)Google Scholar
5 Godin, M., Williams, P. J., Tabard-Cossa, V., Laroche, O., Beaulieu, L. Y., Lennox, R. B., Grutter, P.. Langmuir. 20, 7090. (2004)Google Scholar
6 Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G., Whitesides, G.M.. Chem. Rev. 105, 1103. (2005)Google Scholar
7 Zhao, Y., Perez-Segarra, W., Shi, Q., Wei, A.. J. Am. Chem. Soc. 127, 732. (2005)Google Scholar
8 Flink, S., Veggel, F. C. J. M. van, Reinhoudt, D. N.. Adv. Mater. 12, 1315. (2000)Google Scholar
9 Sabatani, E., Cohen-Boulakia, J., Bruening, M., Rubinstein, I., Langmuir. 9, 2974. (1993)Google Scholar
10 Ong, T. H., Davies, P. B., Bain, C. D., Langmuir. 9, 1836. (1993).Google Scholar
11 Laibinis, P. E., Fox, M. A., Folkers, J. P., Whitesides, G. M.. Langmuir. 7, 3167. (1991).Google Scholar
12 Abe, J., Takiguchi, H., Tamada, K.. Langmuir. 16, 2394. (2000).Google Scholar
13 Tsukamoto, , Kubo, T., Nozoye, H., App. Surf. Sci. 244, 578. (2005)Google Scholar
14 Cavalleri, O., Oliveri, L., Dacca, A., Parodi, R., Rolandi, R.. App. Surf. Sci. 175–176, 357. (2001)Google Scholar
15 Lang, H. P., Baller, M. K., Gerber, Ch., Gimzewski, J. K., Battiston, F. M., Fornaro, P., Ramseyer, J. P., Meyer, E., Guntherodt, H. J., Anal. Chimica Acta. 393, 59. (1999)Google Scholar