Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T00:41:18.794Z Has data issue: false hasContentIssue false

Arsenic in ZnO and GaN: Substitutional Cation or Anion Sites?

Published online by Cambridge University Press:  01 February 2011

Ulrich Wahl
Affiliation:
uwahl@itn.pt, Instituto Tecnologico e Nuclear, Fisica, Estrada Nacional 10, Sacavem, 2686-953, Portugal, +351-219946085, +351-219945125
Joao Guilherme Correia
Affiliation:
Guilherme.Correia@cern.ch, Instituto Tecnologico e Nuclear, Dep. Fisica, Estrada Nacional 10, Sacavem, 2686-953, Portugal
Elisabete Rita
Affiliation:
Elisabete.Rita@cern.ch, Centro de Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, Lisbon, 1649-003, Portugal
Ana Claudia Marques
Affiliation:
Ana.Marques@cern.ch, Centro de Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, Lisbon, 1649-003, Portugal
Eduardo Alves
Affiliation:
ealves@itn.pt, Instituto Tecnologico e Nuclear, Dep. Fisica, Estrada Nacional 10, Sacavem, 2686-953, Portugal
Jose Carvalho Soares
Affiliation:
soaresjc@cii.fc.ul.pt, Centro de Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, Lisbon, 1649-003, Portugal
The Isolde Collaboration
Affiliation:
Isolde.Secretariat@cern.ch, CERN, Geneva 23, 1211, Switzerland
Get access

Abstract

Modifying the properties of ZnO and GaN by means of incorporating arsenic impurities is of interest in both of these semiconductors, although for different reasons. In the case of ZnO, the group V element As has been reported in the literature as one of the few p-type dopants in this technologically promising II-VI compound. However, there is an ongoing debate whether the p-type character is due to As simply replacing O atoms or to the formation of more complicated defect complexes, possibly involving As on Zn sites [1]. In the case of GaN, the incorporation of high concentrations of As has been studied with respect to the formation of GaAs(x)N(1-x) alloys and the related modification of the GaN band gap and its luminescence behaviour. It has been suggested that As in GaN is amphoteric, with its lattice site preference depending on the doping character of the material, i.e. mostly substitutional Ga in p-type but also substitutional N in n-type [2].

We have determined the lattice location of implanted As in ZnO and GaN by means of conversion electron emission channeling from radioactive 73As. In contrast to what one might expect from its nature as a group V element, we find that As does not occupy substitutional O sites in ZnO but in its large majority substitutional Zn sites [3]. Arsenic in ZnO is thus an interesting example for an impurity in a semiconductor where the major impurity lattice site is determined by atomic size and electronegativity rather than its position in the periodic system. The results are different in the case of As implanted into GaN, where we found roughly half of the implanted As atoms occupying Ga and the other half N sites. The amphoteric character of As therefore certainly plays a role in explaining the extreme difficulties in growing high quality GaAs(x)N(1-x) alloys with values of x above a few percent.

A preliminary report will also be given on ongoing emission channeling lattice location experiments using radioactive 124Sb in ZnO and GaN.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pearton, S.J., Norton, D.P., Ip, K., Heo, Y.W., and Steiner, T., J. Vac. Sci. Tech. B 22, 932 (2004), and References therein.Google Scholar
2. Look, D.C., Semicond. Sci. Technol. 20, S55 (2005), and References therein.Google Scholar
3. Ryu, Y.R., Zhu, S., Look, D.C., Wrobel, J.M., Jeong, H.M., and White, H.W., J. Cryst. Growth 216, 330 (2000).Google Scholar
4. Ryu, Y.R., Lee, T.S., and White, H.W., Appl. Phys. Lett. 83, 87 (2003).Google Scholar
5. Look, D.C., Renlund, G.M., Burgener, R.H., and Sizelove, J.R., Appl. Phys. Lett. 85, 5269 (2004).Google Scholar
6. Vaithianathan, V., Lee, B., and Kim, S.S., Appl. Phys. Lett. 86, 062101 (2005).Google Scholar
7. Braunstein, G., Muraviev, A., Saxena, H., Dhere, N., Richter, V., and Kalish, R., Appl. Phys. Lett. 87, 192103 (2005).Google Scholar
8. Vaithianathan, V., Lee, B.T., Chang, C.H., Asokan, K., and Kim, S.S., Appl. Phys. Lett. 88, 112103 (2006).Google Scholar
9. Kang, H.S., Kim, G.H., Kim, D.L., Chang, H.W., Ahn, B.D., and Lee, S.Y., Appl. Phys. Lett. 89, 181103 (2006).Google Scholar
10. Aoki, T., Shimizu, Y., Miyake, A., Nakamura, A., Nakanishi, Y., and Hatanaka, Y., phys. stat. solidi (b) 229, 911 (2002).Google Scholar
11. Xiu, F.X., Yang, Z., Mandalapu, L.J., Zhao, D.T., Liu, J.L., and Beyermann, W.P., Appl. Phys. Lett. 87, 152101 (2005).Google Scholar
12. Lopatiuk-Tirpak, O., Chernyak, L., Xiu, F.X., Liu, J.L., Jang, S., Ren, F., Pearton, S.J., Gartsman, K., Feldmann, Y., Osinsky, A., and Chow, P., J. Appl. Phys. 100, 086101 (2006).Google Scholar
13. Limpijumnong, S., Zhang, S.B., Wei, S.H., and Park, C.H., Phys. Rev. Lett. 92, 155504 (2004).Google Scholar
14. Limpijumnong, S., Smith, M.F., and Zhang, S.B., Appl. Phys. Lett. 89, 222113 (2006).Google Scholar
15. Pankove, J.I. and Hutchby, J.A., J. Appl. Phys. 47, 5376 (1976).Google Scholar
16. Metcalfe, R.D., Wickenden, D., and Clark, W.C., J. Lumin. 16, 405 (1978).Google Scholar
17. Winser, A.J., Novikov, S.V., Davis, C.S., Cheng, T.S., Foxon, C.T., and Harrison, I., Appl. Phys. Lett. 77, 2506 (2000).Google Scholar
18. Gil, B., Morel, A., Taliercio, T., Lefebvre, P., Foxon, C.T., Harrison, I., A.J.Winser, and Novikov, S.V., Appl. Phys. Lett. 79, 69 (2001).Google Scholar
19. Bell, A., Ponce, F.A., Novikov, S.V., Foxon, C.T., and Harrison, I., Appl. Phys. Lett. 79, 3239 (2001).Google Scholar
20. Huang, H.Y., Xiao, J.Q., Ku, C.S., Chung, H.M., Chen, W.K., Chen, W.H., Lee, M.C., and Lee, H.Y., J. Appl. Phys. 92, 4129 (2002).Google Scholar
21. Foxon, C.T., Harrison, I., Novikov, S.V., Winser, A.J., Campion, R.P., and Li, T., J. Phys.: Condens. Matter 14, 3383 (2002).Google Scholar
22. Stötzler, A., Weissenborn, R., Deicher, M., and the ISOLDE collaboration, MRS Internet Nitride, J. Semicond. Research 5S1, W12.9 (2000), see also Mater Res. Soc. Symp. Proc. 595, W12.9 (2000).Google Scholar
23. Li, X., Reuter, E.E., Bishop, S.G., and Coleman, J.J., Appl. Phys. Lett. 72, 1990 (1998).Google Scholar
24. Kuroiwa, R., Asahi, H., Asami, K., Kim, S.J., Iwata, K., and Gonda, S., Appl. Phys. Lett. 73, 2630 (1998).Google Scholar
25. Zhao, Y., Deng, F., Lau, S.S., and Tu, C.W., J. Vac. Sci. Technol. B 16, 1297 (1998).Google Scholar
26. Na, H., Kim, H.J., Yoon, E., Sone, C., and Park, Y., J. Cryst. Growth 248, 437 (2003).Google Scholar
27. Bi, W.G. and Tu, C.W., Appl. Phys. Lett. 70, 1608 (1997).Google Scholar
28. Qiu, Y., Nikishin, S.A., Temkin, H., Faleev, N.N., and Kudriavtsev, Y.A., Appl. Phys. Lett. 70, 3242 (1997).Google Scholar
29. Walle, C.G. Van De and Neugebauer, J., Appl. Phys. Lett. 76, 1009 (2000).Google Scholar
30. Ramos, L.E., Furthmüller, J., Leite, J.R., Scolfaro, L.M.R., and Bechstedt, F, Phys. Rev. B 68, 085209 (2003).Google Scholar
31. Desnica, U.V., Ravi, N., Andreasen, H., and Waard, H. De, Solid State Comm. 60, 59 (1986).Google Scholar
32. Desnica, U.V., Solid State Comm. 69, 411 (1989).Google Scholar
33. Wahl, U., Rita, E., Correia, J.G., Marques, A.C., Alves, E., Soares, J.C., and the ISOLDE collaboration, Phys. Rev. Lett. 95, 215503 (2005).Google Scholar
34. Wahl, U., Rita, E., Correia, J.G., Marques, A.C., Alves, E., Soares, J.C., and the ISOLDE collaboration, accepted for publication in Superlattices and Microstructures.Google Scholar
35. Wahl, U., Correia, J.G., Araújo, J.P., Rita, E., Soares, J.C., and the ISOLDE collaboration, submitted to Appl. Phys. Lett. Google Scholar
36. Hofsäss, H. and Lindner, G., Phys. Rep. 210, 121 (1991).Google Scholar
37. Wahl, U., Correia, J.G., Czermak, A., Jahn, S.G., Jalocha, P., Marques, J.G., Rudge, A., Schopper, F., Soares, J.C., Vantomme, A., Weilhammer, P., and the ISOLDE collaboration, Nucl. Instr. Meth. A 524, 245 (2004).Google Scholar
38. Marques, A.C., Wahl, U., Correia, J.G., Silva, M.R., Rudge, A., Weilhammer, P., Soares, J.C., and the ISOLDE collaboration, Nucl. Instr. Meth. A 572, 1056 (2007).Google Scholar
39. Wahl, U., Vantomme, A., Langouche, G., Araújo, J.P., Peralta, L., Correia, J.G., and the ISOLDE collaboration, J. Appl Phys. 88, 1319 (2000).Google Scholar
40. Wahl, U., Rita, E., Correia, J.G., Alves, E., Araújo, J.P., and the ISOLDE collaboration, Appl. Phys. Lett. 82, 1173 (2003).Google Scholar
41. Wahl, U., Rita, E., Correia, J.G., Alves, E., Soares, J.C., and the ISOLDE collaboration, Phys. Rev. B 69, 012102 (2004).Google Scholar
42. Shannon, R.D., Acta Cryst. A 32, 751 (1976).Google Scholar
43. The CRC Handbook of Chemistry and Physics, 50th edition, ed. Weast, R.C. (CRC Press, Boca Raton 1970) p. F152.Google Scholar
44. Bellaiche, L., Wei, S.H., and Zunger, A., Phys. Rev. B 54, 17568 (1996).Google Scholar
45. Bellaiche, L., Wei, S.H., and Zunger, A., Appl. Phys. Lett. 70, 3558 (1997).Google Scholar
46. Bellaiche, L., Wei, S.H., and Zunger, A., Phys. Rev. B 56, 10233 (1997).Google Scholar
47. Mattila, T. and Zunger, A., Phys. Rev. B 58, 1367 (1998).Google Scholar
48. Zunger, A., phys. stat. sol. (b) 216, 117 (1999).Google Scholar
49. Mattila, T. and Zunger, A., Phys. Rev. B 59, 9943 (1999).Google Scholar
50. Gübel, C., Petzke, K., Schrepel, C., and Scherz, U., Physica B 273, 759 (1999).Google Scholar
51. Kent, P. R. C. and Zunger, A., Phys. Rev. B 64, 115208 (2001).Google Scholar
52. Wang, L.W., Phys. Rev. Lett. 88, 256402 (2002).Google Scholar
53. Li, J. and Wang, L.W., Phys. Rev. B 67, 033102 (2003).Google Scholar
54. Jenichen, A and Engler, C., phys. stat. sol. (b) 241, 1883 (2004).Google Scholar
55. Tit, N., Phys, J. D: Appl. Phys. 39, 2514 (2006)Google Scholar