Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T10:01:30.905Z Has data issue: false hasContentIssue false

Artificial Grain Alignment of Organic Crystalline Thin Films

Published online by Cambridge University Press:  01 February 2011

Toshihiro Shimada*
Affiliation:
shimada@chem.s.u-tokyo.ac.jp, United States
Get access

Abstract

It is important to obtain single crystalline organic thin films for electronics and optics applications. Due to the mismatching in the crystal symmetry, it is difficult to align the crystalline grains of organic molecular films even on single crystalline surfaces. We have developed several techniques for the artificial grain alignment in organic epitaxial growth. (1) Use of nanoscale-textured surfaces prepared by step bunching of vicinally-cut single crystalline surfaces, in which the height of the steps is critically important. (2) Application of external electric field. (3) Optical excitation of the molecules which can be applied to the polar semiconducting molecules. These techniques might be applicable to other materials including ionic materials and ferroelectrics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wittmann, J.C., Smith, P., Nature 352, 414 (1991).Google Scholar
2. Kihara, H., Ueda, Y., Unno, A, Hirai, T., Mol. Cryst. Liq. Cryst. 424, 195 (2004).Google Scholar
3. Ikeda, S., Saiki, K., Tsutsui, K., Edura, T., Wada, Y., Miyazoe, H., Terashima, K., Inaba, K., Mitsunaga, T., Shimada, T., Appl. Phys. Lett. 88, 251905 (2006).Google Scholar
4. Shimada, T., Suzuki, A., Sakurada, T., Koma, A., Appl. Phys. Lett. 68, 2502 (1996).Google Scholar
5. Shimada, T., Ohtomo, M., Suzuki, T., Ueno, K., Ikeda, S., Saiki, K., Sasaki, M., Inaba, K., Appl. Phys. Lett. in press.Google Scholar
6. Suzuki, T., Shimada, T., Ueno, K., Ikeda, S., Saiki, K. and Hasegawa, T.: Mater. Res. Soc. Conf. Proc. 965, S0619 (2007).Google Scholar
7. Ikeda, S., Saiki, K., Wada, Y., Inaba, K., Ito, Y., Kikuchi, H., Terashima, K., Shimada, T., J. Appl. Phys. 103, 084313 (2008).Google Scholar
8. Shimada, T., Nagahori, M., Koma, A., Surf.Sci. 423, L285 (1999).Google Scholar
9. Shimada, T., Nagahori, M., Koma, A., Surf.Sci. 564, L263 (2004).Google Scholar
10. Ichikawa, H., Shimada, T. and Koma, A.: Jpn. J. Appl. Phys. 40, L 225 (2001).Google Scholar
11. Ichikawa, H., Saiki, K., Suzuki, T., Hasegawa, T. and Shimada, T.: Jpn. J. Appl. Phys. 44, L1469 (2005).Google Scholar
12. Ito, E., Washizu, Y., Hayashi, N., Ishii, H., Matui, N., Tsuboi, K., Ouchi, Y., Harima, Y., Yamashita, K. and Seki, K.: J. Appl. Phys. 92, 7306 (2002).Google Scholar
13. Grekov, A.A., Malitsjaya, M.A., Spitzina, V.D. and Fridkin, V.M.: Soviet Physics Crystallography 15, 423 (1970).Google Scholar
14. Brody, P.S.: Solid State Commun 12, 673 (1973).Google Scholar
15. Ogawa, N., Miyata, A., Tamaru, H., Suzuki, T., Shimada, T., Hasegawa, T., Saiki, K. and Miyano, K.: Chem. Phys. Lett. 450, 335 (2008).Google Scholar