Hostname: page-component-5f745c7db-q8b2h Total loading time: 0 Render date: 2025-01-06T06:58:15.593Z Has data issue: true hasContentIssue false

A-Site Distribution in La1−xSrxMnO3: a Computational Study

Published online by Cambridge University Press:  01 February 2011

Yun Hee Jang
Affiliation:
yhjang@gist.ac.kr, Université François Rabelais, LEMA, Department of Physics, Parc de Grandmont, Tours, 37200, France
François Gervais
Affiliation:
francois.gervais@univ-tours.fr, Université François Rabelais, LEMA, Department of Physics, Parc de Grandmont, Tours, 37200, France
Yves Lansac
Affiliation:
lansac@univ-tours.fr, Université François Rabelais, LEMA, Department of Physics, Parc de Grandmont, Tours, 37200, France
Get access

Abstract

The possibility of an A-site (La3+/Sr2+) ordering in a colossal magnetoresistance manganite (CMR) La3/4Sr1/4MnO3 was explored using molecular dynamics (MD) simulations with a newly developed force field (FF) and quantum mechanics (QM) calculations on the structures obtained from MD. The calculated degrees of stabilization (enthalpy gain) of various patterns of A-site ordering are not significant enough to overcome the accompanying entropy loss, supporting the random A-site distribution in La3/4Sr1/4MnO3. This approach combining MD and QM as well as the versatile FF developed in this study should be useful to investigate the structures and functions of magnetic tunnel junction devices involving mixed-valence manganites.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jin, S. Tiefel, T. H., McCormack, M. et al. , Science 264, 413 (1994); Y. Tokura, A. Urushibara, Y. Moritomo et al., J. Phys. Soc. Jpn. 63, 3931 (1994).Google Scholar
2. Salamon, M. B. and Jaime, M. Rev. Mod. Phys. 73, 583 (2001).Google Scholar
3. Haghiri-Gosnet, A. -M. and Penard, J. -P., J. Phys. D: Appl. Phys. 36, R127 (2003).Google Scholar
4. Kuwahara, H. Tomioka, Y. Asamitsu, A. et al. , Science 270, 961 (1995); A. Asamitsu, Y. Moritomo, Y. Tomioka et al., Nature 373, 407 (1995).Google Scholar
5. Wollan, E. O. and Koehler, W. C., Phys. Rev. 100, 545 (1955); J. B. Goodenough, Phys. Rev. 100, 564 (1955).Google Scholar
6. Mori, S. Chen, C. H., and Cheong, S. -W., Nature 392, 473 (1998); C. Renner, G. Aeppli, B. G. Kim et al., Nature 416, 518 (2002).Google Scholar
7. Shibata, T. Bunker, B. Mitchell, J. F. et al. , Phys. Rev. Lett. 88, 207205 (2002); V. Moshnyaga, L. Sudheendra, O. I. Lebedev et al., Phys. Rev. Lett. 97, 107205 (2006).Google Scholar
8. Fuks, D. Bakaleinikov, L. Kotomin, E. A. et al. , Solid State Ionics 177, 217 (2006); S. Picozzi, C. Ma, Z. Yang et al., Phys. Rev. B 75, 094418 (2007); C. Ma, Z. Yang, and S. Picozzi, J. Phys.: Condens. Matter 18, 7717 (2006); V. Ferrari, J. M. Pruneda, and E. Artacho, Phys. Stat. Sol. A203, 1437 (2006); T. Geng and N. Zhang, Phys. Lett. A 351, 314 (2006); H. Zenia, G. A. Gehring, G. Banach et al., Phys. Rev. B 71, 024416 (2005); G. Banach and W. M. Temmerman, Phys. Rev. B 69, 054427 (2004); J. E. Medvedeva, V. I. Anisimov, O. N. Mryasov et al., J. Phys.: Condens. Matter 14, 4533 (2002).Google Scholar
9. Hueso, L. E., Pruneda, J. M., Ferrari, V. et al. , Nature 445, 410 (2007); Z. H. Xiong, D. Wu, Z. V. Vardeny et al., Nature 427, 821 (2004); H. Yamada, Y. Ogawa, I. Ishii et al., Science 305, 646 (2004).Google Scholar
10. Waldman, M. and Hagler, A. T., J. Comput. Chem. 14, 1077 (1993).Google Scholar
11. Iliev, M. N., Abrashev, M. V., Lee, H.-G. et al. , Phys. Rev. B 57, 2872 (1998); O. Chmaissem, B. Dabrowski, S. Kolesnik et al., Phys. Rev. B 64, 134412 (2001).Google Scholar
12. Mori, T. Inoue, K. and Kamegashira, N. J. Alloys Comp. 308, 87 (2000).Google Scholar
13. Norby, P. Krogh Andersen, I. G., and Andersen, E. Krogh, J. Solid State Chem. 119, 191 (1995).Google Scholar
14. Elemans, J. B. A. A. Laar, B. van, Veen, K. R. van der et al. , J. Solid State Chem. 3, 238 (1971).Google Scholar
15. Louca, D. Egami, T. Brosha, E. L. et al. , Phys. Rev. B 56, R8475 (1997); D. Louca and T. Egami, Phys. Rev. B 59, 6193 (1999).Google Scholar
16. Laberty, C. Navrotsky, A. Rao, C. N. R. et al. , J. Solid State Chem. 145, 77 (1999).Google Scholar
17. Urushibara, A. Moritomo, Y. Arima, T. et al. , Phys. Rev. B 51, 14103 (1995).Google Scholar
18. Kallel, N. Frohlich, K. Pignard, S. et al. , J. Alloys Comp. 399, 20 (2005).Google Scholar
19. Perdew, J. P., Burke, K. and Ernzerhof, M. Phys. Rev. Lett. 77, 3865 (1996); J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).Google Scholar
20. Kresse, G. and Furthmuller, J. Comput. Mat. Sci. 6, 15 (1996).Google Scholar
21. Park, J. -H., Vescovo, E. Kim, H. -J. et al. , Nature 392, 794 (1998); D. J. Singh and W. E. Pickett, Phys. Rev. B 57, 88 (1998).Google Scholar