Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T01:08:21.136Z Has data issue: false hasContentIssue false

Assembly of Gold Nanoparticles on DNA Strands

Published online by Cambridge University Press:  11 February 2011

Michael Noyong
Affiliation:
RWTH Aachen, Institute of Inorganic Chemistry, Professor-Pirlet-Str. 1, 52074 Aachen, Germany.
Kirsten Gloddek
Affiliation:
RWTH Aachen, Institute of Inorganic Chemistry, Professor-Pirlet-Str. 1, 52074 Aachen, Germany.
Ulrich Simon
Affiliation:
RWTH Aachen, Institute of Inorganic Chemistry, Professor-Pirlet-Str. 1, 52074 Aachen, Germany.
Get access

Abstract

In this work we report first results on a direct deposition of 2–4nm gold nanoparticles onto DNA strands. In a two step protocol first cis-Pt (cis-diamminedichloroplatinum(II), cis-Pt(NH3)2Cl2) is intercalated into a DNA duplex. In a second step cysteamine stabilized gold nanoparticles are immobilized on DNA due to a ligand exchange (NH3 vs. NH2-R) at the Pt center which was done in solution as well as on surface bound oligonucleotides. The DNA-nanoparticle assemblies are prepared on mica and silicon and are imaged by AFM.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Braun, E., Eichen, Y., Sivan, U., Ben-Yoseph, G., Nature 391, 775778 (1998).Google Scholar
2. Ford, W. E., Harnack, O., Yasuda, A., Wessels, J. M., Adv. Mater. 13 (23), 17931797 (2001).Google Scholar
3. Richter, J., Mertig, M., Pompe, W., Mönch, I., Schackert, H. K., Appl. Phys. Lett. 78 (4), 536538 (2001).Google Scholar
4. Richter, J., Seidel, R., Kirsch, R., Mertig, M., Pompe, W., Plaschke, J., Schackert, H. K., Adv. Mater. 12 (7), 507510 (2000).Google Scholar
5. Coffer, J. L., Bigham, S. R., Li, X., Pinizzotto, R. F., Rho, Y. G., Pirtle, R. M., Pirtle, I. L., Appl. Phys. Lett. 69, 38513853 (1996).Google Scholar
6. Coffer, J. L., J. Cluster Sci. 8, 159179 (1997).Google Scholar
7. Alivisatos, A. P., Johnsson, K. P., Peng, X., Wilson, T. E., Loweth, C. J., Bruchez, M. P. Jr, P G. Schultz 382, 609611 (1996).Google Scholar
8. Niemeyer, C. M., Bürger, W., Peplies, J., Angew. Chem. 110 (6), 23912395 (1998).Google Scholar
9. Jamieson, E. R., Lippard, S. J., Chem. Rev. 99, 24672498 (1999).Google Scholar
10. Lempers, E. L. M., Reedijk, J., Advances in Inorganic Chemistry 37, edited by Sykes, A. G. (Academic Press Inc., San Diego, 1991), p. 183.Google Scholar
11. Eastman, A., Biochemistry 21, 67326736 (1982).Google Scholar
12. Burstyn, J. N., Heiger-Bernays, W. J., Cohen, S. M., Lippard, S. J., Nucleic Acids Res. 28 (21), 42374243 (2000).Google Scholar
13. Ano, S. O., Intini, F. P., Natile, G., Marzilli, L. G., J. Am. Chem. Soc. 120, 1201712022 (1998).Google Scholar
14. Davies, M. S., Berners-Price, S. J., Hambley, T. W., J. Am. Chem. Soc. 120, 1138011390 (1998).Google Scholar
15. Gloddek, K., Simon, U., to be published.Google Scholar
16. Ikai, A., Surf. Sci. Rep. 26, 261332 (1996).Google Scholar
17. Wang, W., Lin, J., Schwartz, D. C., Biophys. J. 75, 513520 (1998).Google Scholar