Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-05T04:10:49.515Z Has data issue: false hasContentIssue false

Atomic and Electronic Structures of Au/TiO2 Catalyst – First-Principle Calculations –

Published online by Cambridge University Press:  11 February 2011

Kazuyuki Okazaki
Affiliation:
Interface Science Research Group, Special Division for Green Life Technology, AIST Kansai, National Institute of Advanced Industrial Science and Technology, 1–8–31 Midorigaoka, Ikeda 563–8577, Japan.
Yoshitada Morikawa
Affiliation:
Quantum Modeling Research Group, Research Institute for Computational Science, AIST, Tsukuba, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 2, 1–1–1 Umezono, Tsukuba 305–8567, Japan.
Shingo Tanaka
Affiliation:
Interface Science Research Group, Special Division for Green Life Technology, AIST Kansai, National Institute of Advanced Industrial Science and Technology, 1–8–31 Midorigaoka, Ikeda 563–8577, Japan. Quantum Modeling Research Group, Research Institute for Computational Science, AIST, Tsukuba, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 2, 1–1–1 Umezono, Tsukuba 305–8567, Japan.
Satoshi Ichikawa
Affiliation:
Interface Science Research Group, Special Division for Green Life Technology, AIST Kansai, National Institute of Advanced Industrial Science and Technology, 1–8–31 Midorigaoka, Ikeda 563–8577, Japan.
Koji Tanaka
Affiliation:
Interface Science Research Group, Special Division for Green Life Technology, AIST Kansai, National Institute of Advanced Industrial Science and Technology, 1–8–31 Midorigaoka, Ikeda 563–8577, Japan.
Masanori Kohyama
Affiliation:
Interface Science Research Group, Special Division for Green Life Technology, AIST Kansai, National Institute of Advanced Industrial Science and Technology, 1–8–31 Midorigaoka, Ikeda 563–8577, Japan. Quantum Modeling Research Group, Research Institute for Computational Science, AIST, Tsukuba, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 2, 1–1–1 Umezono, Tsukuba 305–8567, Japan.
Get access

Abstract

The atomic and electronic structures of Au/TiO2(110) systems have been theoretically investigated based on the density functional theory. We have examined Au adsorption on the stoichiometric TiO2(110) surface and on the Ti-rich surface formed by the removal of bridging-oxygen atoms (VOB surface) and the O-rich surface formed by the removal of 6-fold titanium and bridging-oxygen atoms (VTi6OB surface). For the stoichiometric surface, the stable site for the Au adatom is the hollow site of one bridging-oxygen and two in-plane oxygen atoms or the on-top site above 5-fold titanium atom. For the Ti-rich VOB surface, the bridging site of 6-fold titanium atoms along [001] direction is the most stable. In addition, the vacant site of 6-fold titanium atom is the most stable for the O-rich VTi6OB surface. The adhesive energies between the Au adlayer and the TiO2 surface are larger for the non-stoichiometric surfaces than that for the stoichiometric surface. The charge transfer between the Au adatom and the substrate is small for stoichiometric surface. For the Ti-rich VOB surface, the electron transfer occurs from the 6-fold Ti to the Au, while from the Au to the in-plane oxygen for the O-rich VTi6OB surface. It can be said that the TiO2 surface conditions such as defects or non-stoichiometry strongly affect the adsorption energy and electron structure of the Au adsorbed system. This point should be closely related the catalytic property of the Au/TiO2 system.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Haruta, M., Catal. Today 36, 153 (1997) and references therein.Google Scholar
Kobayashi, T., Haruta, M., Sano, H., and Nakane, M., Sens. Actuators 13, 339 (1988).Google Scholar
3. Lin, S. and Vannice, M. A., Catal. Lett. 10, 47 (1991).Google Scholar
4. Lin, S., Bollinger, M., and Vannice, M. A., Catal. Lett. 17, 245 (1993).Google Scholar
5. Hayashi, T., Tanaka, K., and Haruta, M., J. Catal. 178, 566 (1998).Google Scholar
6. Valden, M., Lai, X., and Goodman, D. W., Science 281, 1647 (1998).Google Scholar
7. Valden, M., Pak, S., Lai, X., and Goodman, D. W., Catal. Lett. 56, 7 (1998).Google Scholar
8. Rainer, D. R. and Goodman, D. W., J. Mol. Catal. A 131, 259 (1998).Google Scholar
9. Lai, X., Calir, T. P. St., Valden, M., and Goodman, D. W., Prog. Surf. Sci. 59, 25 (1998).Google Scholar
10. Akita, T., Tanaka, K., Tsubota, S., and Haruta, M., J. Electro. Microsco. 49, 657 (2000).Google Scholar
11. Zhang, L., Persaud, R., and Madey, T. E., Phys. Rev. B 56, 10549 (1997).Google Scholar
12. Thiên-Nga, L. and Paxton, A. T., Phys. Rev. B 58, 13223 (1998).Google Scholar
13. Charlton, G., Howes, P. B., Nicklin, C. L., Steadman, P., Taylor, J. S. G‥, Muryn, C. A., Harte, S. P., Mercer, J., McGrath, R., Norman, D., Turner, T. S., and Thornton, G., Phys. Rev. B 78, 495 (1997).Google Scholar
14. Ramamoorthy, M., Vanderbilt, D., and King-Smith, R. D., Phys. Rev. B 49, 16727 (1994).Google Scholar
15. Bates, S. P., Kresse, G., and Gillan, M. J., Surf. Sci. 188, 319 (1997).Google Scholar
16. Yang, Z., Wu, R., and Goodman, D. W., Phys. Rev. B 61, 14066 (2000).Google Scholar
17. Vittadini, A. and Selloni, A., J. Chem. Phys. 117, 353 (2002).Google Scholar
18. Lopez, N. and Nørskov, J. K., Surf. Sci. 515, 175 (2002).Google Scholar
19. Ke, S. H., Uda, T., and Terakura, K., Appl. Surf. Sci. 188, 319 (2002).Google Scholar
20. Morikawa, Y., Hayashi, T., Liew, C. C., and Nozoe, H., Surf. Sci. 507–510, 46 (2002).Google Scholar
21. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).Google Scholar
22. Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965).Google Scholar
23. Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
24. Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).Google Scholar
25. Troullier, N. and Martins, J. L., Phys, Rev. B 43, 1993 (1991).Google Scholar
26. Methfessel, M. and Paxton, A. T., Phys. Rev. B 40, 3616 (1989).Google Scholar