Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T13:57:03.806Z Has data issue: false hasContentIssue false

Atomic Force Microscopy Of Micron Size Silicalite Crystals

Published online by Cambridge University Press:  15 February 2011

P. Rasch
Affiliation:
Universität, München, Sektion Physik, Schellingstr. 4, D-8000 Miinchen 40, F.R.G.
W. M. Heckl
Affiliation:
Universität, München, Sektion Physik, Schellingstr. 4, D-8000 Miinchen 40, F.R.G.
H. W. Deckman
Affiliation:
Corporate Research, Exxon Research And Engineering Co., Annandale, N.J.
W. Häberle
Affiliation:
IBM. Research, Schellingstr. 4, D-8000 Miinchen 40, F.R.A.
Get access

Abstract

We have imaged micron sized silicalite crystals with an atomic force microscope (AFM). High resolution images taken in the repulsive mode show a periodic pattern that locally has a symmetry and periodicity which can be mapped onto the expected image looking along the [010] direction. Extra spots, however, appear in the image in regions which should correspond to channels exposed at the surface. These extra spots are attributed to multiple tip effects which should not affect the ability to detect long range ordering. On a scale length of ˜ 3 – 5 unit cells, the ordering in images deviates from that expected for a perfect crystal. This may be due to imperfections in the ordering at crystal surfaces. One other important aspect of the surface crystallography is revealed in low resolution scans where definite steps / grooves in the exposed surface are seen. The results are discussed in terms of the potential of AFM as a probe of surface crystallography.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Binnig, G., Quate, C. F., and Gerber, C. H., Phys. Rev. Lett. 12, 930 (1986).Google Scholar
2. Albrecht, T. R. and Quate, C.F., J. Appl. Phys 62, 2599 (1987), O. Marti, B. Drake, S.A.C. Gould, P.K. Hansma, J. Vac. Sci. Tech. A6, 287 (1988), for a recent review see D. Rugar and P. Hansma, Physics Today 43, 23 (1990) and K. Wickramasinge Sci. Am. 97 (1989).Google Scholar
3. Overney, R., Howald, L. (to be published)Google Scholar
4. Meyer, E., Howald, L., Overnney, R., Heinzelmann, H., Fromner, J., Juntherobt, H. J., Watner, E., Schier, H., and Roth, S. Nature 349,398 (1991).CrossRefGoogle Scholar
5. Weisenhorn, A. L., MacDougall, J. E., Gould, S. A. C., Cox, S. D., Wise, W. S., Massie, J., Maivald, P., Elings, V. B., Stucky, G. D., Hansma, P. K., Science 247, 1330 (1990).Google Scholar
6. Flanigen, E. M., Bennett, J. M., Grose, R. W., Cohen, J. P., Patton, R. L., Kirchner, R. M. and Smith, J. V. Nature (London), 271, 512516 (1978).Google Scholar
7. Specht, M., Diploma Thesis, University Munchen (1990).Google Scholar
8. Meyer, G. and Amer, N.M., Appl. Phys. Lett. 53, 1045 (1988).Google Scholar