Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T00:28:46.375Z Has data issue: false hasContentIssue false

Atomic Scale Simulation of Cross Slip and Screw Dislocation Dipole Annihilation

Published online by Cambridge University Press:  10 February 2011

Torben Rasmussen*
Affiliation:
Centre for Atomic-scale Materials Physics and Department of Physics Technical University of Denmark, DK-2800 Lyngby, Denmark, and Materials Research Department, Rise National Laboratory, DK-4000 Roskilde, Denmark
Get access

Abstract

Atomistic simulations are used to study cross slip of a single screw dislocation as well as screw dislocation dipole annihilation in Cu. A configuration space path techniquex is applied to determine, without presumptions about the saddle point, the minimum energy path of transition for cross slip. The cross slip process is that proposed by Friedel and Escaig, and the energy of the in-plane constriction initiating cross slip is determined. A minimum stable dipole height much smaller than previously inferred from experimental studies is found. Relaxed screw dislocation dipoles adopt a skew configuration due to the anisotropy of Cu. The path technique is applied to investigate annihilation of stable screw dislocation dipoles, and the energy barrier for annihilation as a function of dipole height is determined for both homogeneous and heterogeneous cross slip leading to the annihilation. The results might be used as quantitative input into meso-/macro-scopical modelling approaches which rely on parameters deduced from either simulation or experiment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Carstensen, J. V., Leffers, T., Lorentzen, T., 0. Pedersen, B., Sorensen, B. F., and Winther, G., editors, Modelling of Stucture and Mechanics of Materials from Microscale to Product. Rise National Laboratory, Roskilde, Denmark (1998).Google Scholar
[2] Devincre, B. and Kubin, L. P., Materials Science and Engineering A 234, 8 (1997), and references therein.Google Scholar
[3] Rhee, M., Zbib, H. M., Hirth, J. P., Huang, H., and Rubia, T. de la, Modelling Simul. Mat. Sci. Eng. 6, 467 (1998).Google Scholar
[4] Rodney, D. and Phillips, R., Structure and Strength of Dislocation Junctions: An Atomic Level Analysis, (1998), submitted.Google Scholar
[5] Duesbery, M. S. and Xu, W., Scripta Mat. 39, 283 (1998).Google Scholar
[6] Pedersen, O. B., Philosophical Magazine A 73, 829 (1996).Google Scholar
[7] Friedel, J., In Dislocations and Mechanical Properties of Crystals, eds. Fisher, J. C. et al., John Wiley & Sons (1957).Google Scholar
[8] Escaig, B., In Dislocation Dynamics, eds. Rosenfeld, A. R., Hahn, G. T., Bement, A. L. Jr, and Jaffee, R. I., pages 655677, McGraw-Hill Series in Materials-Science and Engineering (1968); Jour. de Phys. (France) 29, 255 (1968).Google Scholar
[9] Fleischer, R. L., Acta Metallurgica 7, 134 (1959).Google Scholar
[10] Marcinkowski, M. J., Sadananda, K., and Olson, N. J., Cryst. Latt. Def. 5, 187 (1974).Google Scholar
[11] Clarebrough, L. M. and Forwood, C. T., Phys. Stat. Sol. A 32, K15 (1975).Google Scholar
[12] Rasmussen, T., Jacobsen, K. W., Leffers, T., and Pedersen, O. B., Physical Review B 56, 2977 (1997).Google Scholar
[13] Rasmussen, T., Jacobsen, K. W., Leffers, T., Pedersen, O. B., Srinivasan, S. G., and Jónsson, H., Physical Review Letters 79, 3676 (1997).Google Scholar
[14] Saada, G., Materials Science and Engineering A 137, 177 (1991).Google Scholar
[15] Duesbery, M. S., Louat, N. P., and Sadananda, K., Acta metall. mater. 40, 149 (1992).Google Scholar
[16] Püschl, W. and Schoeck, G., Mat. Sci. and Eng. A 164, 28 (1993).Google Scholar
[17] Stroh, A. N., Proc. Phys. Soc. B 67, 427 (1954).Google Scholar
[18] Püschl, W., Phys. Stat. Sol. (B) 162, 363 (1990).Google Scholar
[19] Mills, G., Jónsson, H., and Schenter, G., Surface Science 324, 305 (1995).Google Scholar
[20] Jónsson, H., Mills, G., and Jacobsen, K. W., In Classical and Quantum Dynamics in Condensed Phase Simulations, eds. Berne, B. J., Ciccotti, G., and Coker, D. F., World Scientific (1998).Google Scholar
[21] Jacobsen, K. W., Norskov, J. K., and Puska, M. J., Physical Review B 35, 7423 (1987).Google Scholar
[22] Jacobsen, K. W., Stoltze, P., and Ncrskov, J. K., Surface Science 366, 394 (1996).Google Scholar
[23] Rosengaard, N. M. and Skriver, H. L., Physical Review B 47, 12865 (1992).Google Scholar
[24] Stoltze, P., Simulation methods in atomic-scale materials physics, Polyteknisk Forlag, Lyngby (1997).Google Scholar
[25] Faken, D. and Jónsson, H., Computational Materials Science 2, 279 (1994).Google Scholar
[26] Rasmussen, T., Atomic Scale Simulation of Dislocation Reactions, PhD thesis, Technical University of Denmark (1998).Google Scholar
[27] Essmann, U. and Mughrabi, H., Philosophical Magazine A 40, 731 (1979).Google Scholar
[28] Morton, A. J. and Forwood, C. T., Cryst. Latt. Def. 4, 165 (1973).Google Scholar
[29] Forwood, C. T. and Humble, P., Aust. J. Phys. 23, 697 (1970).Google Scholar
[30] Rasmussen, T., Jacobsen, K. W., Leffers, T., Pedersen, O. B., and Vegge, T., Simulation of structure and annihilation of screw dislocation dipoles, (1999), to be submitted.Google Scholar