Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-30T23:37:49.552Z Has data issue: false hasContentIssue false

Atomic simulations of GB sliding in pure and segregated bicrystals

Published online by Cambridge University Press:  08 October 2013

Motohiro Yuasa
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Nagoya, 463-8560 Japan
Yasumasa Chino
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Nagoya, 463-8560 Japan
Mamoru Mabuchi
Affiliation:
Kyoto University, Kyoto, 606-8501 Japan
Get access

Abstract

Grain boundary (GB) sliding is an important deformation mode in polycrystals, and it has been extensively investigated, for example, there are many studies on influences of the atomic geometry in the GB region. However, it is important to investigate GB sliding from the electronic structure of GB for deeper understandings of the sliding mechanisms. In the present work, we investigated the GBs sliding in pure and segregated bicrystals with classical molecular dynamics (MD) simulations and first-principles calculations. It is accepted that the sliding rate is affected by the GB energy. However, there was no correlation between the sliding rate and the GB energy in either the pure or the segregated bicrystals. First-principles calculations revealed that the sliding rate calculated by the MD simulations increases with decreasing minimum charge density at the bond critical point in the GB. This held in both the pure and segregated bicrystals. It seems that the sliding rate depends on atomic movement at the minimum charge density sites.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Watanabe, T., Mater. Sci. Eng. A 166, 11 (1993).10.1016/0921-5093(93)90306-YCrossRefGoogle Scholar
Langdon, T. G., Mater. Sci. Eng. A 166, 67 (1993).10.1016/0921-5093(93)90311-2CrossRefGoogle Scholar
Namilae, S., Chandra, N., and Nieh, T. G., Scripta Mater. 46, 49 (2002).10.1016/S1359-6462(01)01195-2CrossRefGoogle Scholar
Swygenhoven, H. V., and Derlet, P. M., Phys. Rev. B 64, 224105 (2001).10.1103/PhysRevB.64.224105CrossRefGoogle Scholar
Meyers, M. A., Mishra, A., and Benson, D. J., Prog. Mater. Sci. 51, 427 (2006).10.1016/j.pmatsci.2005.08.003CrossRefGoogle Scholar
Sansoz, F., and Molinari, J. F., Acta Mater. 53, 1931 (2005).10.1016/j.actamat.2005.01.007CrossRefGoogle Scholar
Wolf, D., Acta Metall.Mater. 38, 781 (1990).10.1016/0956-7151(90)90030-KCrossRefGoogle Scholar
Yin, W. M., Whang, S. H., and Mirshams, R. A., Acta Mater. 53, 383 (2005).10.1016/j.actamat.2004.09.034CrossRefGoogle Scholar
Briant, C. L., and Banerji, S. K., Int. Met. Rev. 23, 164 (1978).10.1179/imr.1978.23.1.164CrossRefGoogle Scholar
Wang, Y. M., Cheng, S., Wei, Q. M., Ma, E., Nieh, T. G., and Hamza, A., Scripta Mater. 51,1023 (2004).10.1016/j.scriptamat.2004.08.015CrossRefGoogle Scholar
Schweinfest, R., Paxton, A. T., and Finnis, M. W., Nature 432 1008 (2004).10.1038/nature03198CrossRefGoogle Scholar
Yamaguchi, M., Shiga, M., and Kabraki, H., Science 307, 393 (2005).10.1126/science.1104624CrossRefGoogle Scholar
Wu, R., Freeman, A. J., and Olson, G. B., Science 265, 376 (1994).10.1126/science.265.5170.376CrossRefGoogle Scholar
Millett, P. C., Selvam, R. P., and Saxena, A., Mater. Sci. Eng. A 431, 92 (2006).10.1016/j.msea.2006.05.074CrossRefGoogle Scholar
Du, N., Qi, Y., Krajewski, P. E., and Bower, A. F., Metall. Mater. Trans. A 42, 651 (2011).10.1007/s11661-010-0326-zCrossRefGoogle Scholar
Melchionna, S., Ciccotti, G., and Hoover, H. B. L., Mol. Phys. 78, 533 (1993).10.1080/00268979300100371CrossRefGoogle Scholar
Parrinello, M., and Rahman, A., J. Appl. Phys. 527, 182 (1981).Google Scholar
Zhou, X.W., Wadley, H. N. G., Johnson, R. A., Larson, D. J., Tabat, N., Cerezp, A., Petford-Long, A. K., Smith, G. D. W., Clifton, P. H., Martens, R. L., and Kelly, T. F., Acta Mater. 49, 4005 (2001).10.1016/S1359-6454(01)00287-7CrossRefGoogle Scholar
Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., and Joannopoulos, J. D., Rev. Mod. Phys. 64, 1045 (1992).10.1103/RevModPhys.64.1045CrossRefGoogle Scholar
Hohenberg, P., and Kohn, W., Phys. Rev. 136, B864 (1964).10.1103/PhysRev.136.B864CrossRefGoogle Scholar
Kohn, W., and Sham, L., Phys. Rev. 140, A1133 (1965)10.1103/PhysRev.140.A1133CrossRefGoogle Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996)10.1103/PhysRevLett.77.3865CrossRefGoogle Scholar
Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).10.1103/PhysRevB.41.7892CrossRefGoogle Scholar
Millet, P. C., Selvam, R. P., Bansal, S., and Saxena, A., Acta Mater. 53, 3671 (2005).10.1016/j.actamat.2005.04.031CrossRefGoogle Scholar
Eberhart, M. E., Clougherty, D. P., and MacLaren, J. M., J. Am. Chem. Soc. 115, 5262 (1993).10.1021/ja00066a048CrossRefGoogle Scholar
Kioussis, N., Herbranson, M., Collins, E., and Eberhart, M. E., Phys. Rev. Lett. 88, 125501 (2002).10.1103/PhysRevLett.88.125501CrossRefGoogle Scholar
Detor, A. J., and Schuh, C. A., Acta Mater. 55, 4221 (2007).10.1016/j.actamat.2007.03.024CrossRefGoogle Scholar
Kirchheim, R., Acta Mater. 50, 413 (2002).10.1016/S1359-6454(01)00338-XCrossRefGoogle Scholar