Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T14:10:06.032Z Has data issue: false hasContentIssue false

Atomic Structure of The α-A12O3(0001)(√31×31)R±9° Reconstruction

Published online by Cambridge University Press:  15 February 2011

G. Renaud
Affiliation:
CEA, Département de Recherche Fondamentale sur la Matière Condensée, SP2M/ PI, 85X, 38041 Grenoble Cédex, FRANCE
B. Villette
Affiliation:
Laboratoire pour l'tilisation du Rayonnement Electromagnétique (L.U.R.E.), Bât. 209D, 91405 Orsay Cédex, FRANCE.
Get access

Abstract

The atomic structure of the α-A12O3 (0001)(√31×√31)R±9° reconstruction has been solved by Grazing Incidence X-ray Diffraction. The surface structure is found to be perfectly commensurable with the underlying bulk lattice, with exponential correlation length ∼500 Å. It consists of hexagonal zones of two nearly perfect closed-packed Al(111) planes, separated by a defect of hexagonal periodicity with parameter 26.5 Å. This structure may explain why the reconstruction can be obtained at lower temperature by deposition of a few aluminum layers, and why Al/Al2O3 multilayers remain coherent, with aluminum of (111) orientation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. French, T.M. and Somarjai, G.A., J. Phys. Chem., 74, 12 (1970).Google Scholar
2. Chang, C., J. Appl. Phys., 39, 5570 (1968).Google Scholar
3. Charig, J.M. and Skinner, D.K., in Proceedings of the Conference on the Structure and Chemistry of Solid Surfaces, (Wiley & Sons, New-York, N-Y, 1969), p. 34.Google Scholar
4. Baik, S., Fowler, D.E., Blakeley, J.M., Raj, R., J. Am. Ceram. Soc., 68, 281 (1985)Google Scholar
5. Gautier, M., Duraud, J.P., Pham Van, L. and , M J. Guittet, Surf. Sci., 250, 71 (1991).Google Scholar
6. Gautier, M., Duraud, J.P. and Pham Van, L., Surf. Sci. Lett., 249, L327 (1991).CrossRefGoogle Scholar
7. Fuoss, P.H. and Brennan, S., Ann. Rev. Mater. Sci., 20, 365 (1990).Google Scholar
8. Feidenhans'l, R., Surf. Sci. Rep., 10, 105 (1989).Google Scholar
9. Robinson, I.K. and Tweet, D.J., Rep. Prog. Phys., 55, 599 (1992).Google Scholar
10. Kim, Y. and Hsu, T., Surf. Sci. 258, 131 (1991).Google Scholar
11. Ndubuisi, G. C., Liu, J. and Cowley, J.M., Microsc. Res. Tech., 20, 439 (1992).Google Scholar
12. Pham Van, L, PhD thesis, Université PARIS VI, 1992.Google Scholar
13. Renaud, G., Villette, B., Guenard, P., Chandesris, D. and Magnan, H., 1989–1992 LURE Activity Report, and 1992 LURE Technical Guide.Google Scholar
14. Renaud, G. and Villette, B., 1989–1992 LURE Activity Report, and 1992 LURE Technical Guide.Google Scholar
15. Roberts, M. and Kee, T. Mac, in Chemistry of Metal-Gas Interface, (Oxford University Press, 1978), p. 97.Google Scholar
16. Robinson, I.K., Phys. Rev. B, 35, 3910 (1987).Google Scholar
17. Gillet, E. and Ealet, B., Surf. Sci., 273, 427 (1992).Google Scholar
18. Vermeersch, M., Sporken, R., Lambin, Ph. and Caudano, R., Surf. Sci. 235, 5 (1990).Google Scholar
19. Hirayama, H., Takaoka, G.H., Usui, H., Yamada, I., Nucl. Inst. and Meth. in Phys. Res., B59/60, 207 (1991).Google Scholar
20. Ohkubo, M., Suzuki, N. and Hioki, T., Appl. Phys. Lett., 56, 2631 (1990).Google Scholar
21. Guo, J. and Moller, P., Vacuum, 41, 1114 (1990).Google Scholar