Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T08:35:20.322Z Has data issue: false hasContentIssue false

Atomic Structure Studies of Zirconia Solid Solutions by EXAFS

Published online by Cambridge University Press:  15 February 2011

I-Wei Chen
Affiliation:
The University of Michigan, Ann Arbor, MI 48109-2136
Ping Li
Affiliation:
The University of Michigan, Ann Arbor, MI 48109-2136
James Penner-Hahn
Affiliation:
The University of Michigan, Ann Arbor, MI 48109-2136
Get access

Abstract

We have investigated, using EXAFS, the local atomic structures of four zirconia polymorphs and their solid solutions with Ca2+, Ga3+, Fe3+, y3+, Gd3+, Ge4+, Ti4+, Ce4+ and Nb5+. Structural information up to 9Å, and in one special case up to 10.9Å, from the absorbing atom has been obtained. The characteristic features of local environments of both the host Zr and the dopant cations, and their variations leading to cation ordering and symmetry evolutions, are elucidated in terms of a dopant size effect and an oxygen vacancy effect. The dynamic aspects of the EXAFS Debye-Waller factor are used to shed light on the connection between phase transition, dopant stabilization, and cation-anion correlation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Teo, B.K., EXAFS: Basic Principles and Data Analysis (Springer-Verlag, New York/Berlin, 1986).CrossRefGoogle Scholar
2. X-ray Absorption Fine Structure, edited by Hasnain, S.S. (Ellis Horwood Ltd, England, 1991).Google Scholar
3. Stevens, R., Zirconia and Zirconia Ceramics (Magnesium Elektron Ltd, England, 1986).Google Scholar
4. Lefèvre, I., Ann. Chim., 8, 117–49 (1963).Google Scholar
5. Stöcker, R.J., Ann. Chim, 1960, 1459–1502.Google Scholar
6. Advances in Ceramics, Vol.3, edited by Heuer, A.H. and Hobbs, L.W. (American Ceramic Society, Columbus, OH, 1981).Google Scholar
7. Advances in Ceramics. Vol.12, edited by Claussen, N., Rühle, M. and Heuer, A.H. (American Ceramic Society, Columbus, OH, 1984).Google Scholar
8. Advances in Ceramics, Vols. 24A & B, edited by Sõmiya, S., Yamamoto, N. and Yanagina, H. (American Ceramic Society, Westerville, OH, 1988).Google Scholar
9. Steele, D. and Fender, B.E.F., J. Phys. C: Solid State Phys., 7, 111 (1974).CrossRefGoogle Scholar
10. Moringana, M., Cohen, J.B. and Faber, J. Jr, Acta, Cryst., A35, 789–95 (1979).CrossRefGoogle Scholar
11. Smith, D.K. and Newkirk, H.W., Acta Cryst., 18,983 (1965).Google Scholar
12. Ohtaka, O., Yamanaka, T., Kume, S., Hara, N., Asano, H. and Izumi, F., (Japan Acad. Proc. 66, Ser. B, 1990) p. 193.CrossRefGoogle Scholar
13. Howard, C.J., Hill, R.J. and Reichert, B.E., Acta Cryst., B44, 116–20 (1988).CrossRefGoogle Scholar
14. Yoshimura, M., Yashima, M. and Noma, T., J. Mater. Sci., 25,2011–16 (1990).CrossRefGoogle Scholar
15. Kilner, J.A. and Waters, C.D., Solid State Ionics, 6, 253–59 (1982).Google Scholar
16. Sheu, T.S., Tien, T.Y. and Chen, I.W., J. Am. Ceram. Soc., 75 (5), 1108–16 (1992).CrossRefGoogle Scholar
17. Michel, D., Van Den Borre, M.T. and Ennaciri, A., in Advances in Ceramics, Vol.24, edited by Somiya, S., Yamamoto, N. and Hanagida, H. (American Ceramic Society, Westerville, OH, 1988), pp. 555–62.Google Scholar
18. Keramidas, V.G. and White, W.B., J. Chem. Phy., 59 (3), 1561–62 (1973).CrossRefGoogle Scholar