Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T14:15:59.588Z Has data issue: false hasContentIssue false

Atomistic Modeling of Extended Defects in Metalic Alloys: Dislocations and Grain Boundaries in Ll2 Compounds

Published online by Cambridge University Press:  28 February 2011

V. Vitek
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
G. J. Ackland
Affiliation:
Department of Physics, University of Edinburgh, Edinburgh, U.K
J. Cserti
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
Get access

Abstract

Extended defects, such as dislocations and grain boundaries, control a wide variety of material properties and their atomic structure is often a governing factor. A necessary precursor for modeling of these structures is a suitable description of atomic interactions. We present here empirical many-body potentials for alloys which represent a very simple scheme for the evaluation of total energies and yet reflect correctly the basic physical features of the alloy systems modeled. As examples of atomistic studies we show results of calculations of the core structures of screw dislocations in Ll2 compounds. The same potentials have also been used to calculate structures of grain boundaries in these compounds. The deformation and fracture behavior of Ll2 alloys is then discussed in the light of grain boundary and dislocation core studies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sutton, A. P., Int. Metals Reviews 29, 136, (1984).Google Scholar
2. Vitek, V., in Dislocations 1984, edited by Veyssiere, P., Kubin, L. and Castaign, J. (CNRS Press, Paris, 1984), p.435.Google Scholar
3. Grain Boundary Structure and Related Phenomena, Trans. Japan Inst. Metals 27(1986)Google Scholar
4. Interfacial Structure. Properties and Design, edited by Yoo, M. H., Clark, W. A. T. and Briant, C. L. (Mater. Res. Soc. Proc., Vol. 122, Pittsburgh, PA, 1988).Google Scholar
5. Interface Science and Engineering, edited by Raj, R. and Sass, S. L., J. Phys. Paris 49 (1988).Google Scholar
6. Vitek, V., in Dislocations and Properties of Real Materials, edited by Loretto, M. H. (The Institute of Metals, London, 1985), p. 30.Google Scholar
7. Veyssiere, P., Rev. Phys. Appl. Paris 23, 673, (1988).Google Scholar
8. Duesbery, M. S., in Dislocations in Solids, edited by Nabarro, F. R. N. (Elsevier Science Publ., Amsterdam, 1989), p. 67.Google Scholar
9. Interatomic Potentials and Lattice Defects, edited by Lee, J. K. (The Metallurgical Society of AIME, Warrendale, PA, 1981).Google Scholar
10. Computer Simulation of Condensed Matter, edited by Catlow, C. R. A. and Mackrodt, W. C., Physica B+C 131, Nos. 1-3 (1985).Google Scholar
11. Computer-Based Microscopic Description of the Structure and Properties of Materials, edited by Broughton, J., Krakow, W. and Pantelides, S. T. (Mater. Res. Soc. Proc. 63, Pittsburgh, PA, 1986).Google Scholar
12. Interatomic Forces in Relation to Defects and Disorder and Condensed Matter, edited by Lidiard, A. B., Phil. Magazine A 58, No. 1 (1988).Google Scholar
13. Atomic Scale Calculations in Materials Science, edited by Tersoff, J., Vanderbilt, D. and Vitek, V. (Mater. Res. Soc. Proc., Vol. 141, Pittsburgh, PA, 1989).Google Scholar
14. Atomistic Simulation of Materials: Beyond Pair Potentials, edited by Vitek, V. and Srolovitz, D. J. (Plenum Press, New York, 1989).Google Scholar
15. DeHosson, J. Th. M., in Interatomic Potentials and Lattice Defects, edited by Lee, J. K. (The Metallurgical Society of AIME, Warrendale, PA, 1981), p. 3.Google Scholar
16. Taylor, R., Physica B+C 131, 103, (1985).Google Scholar
17. Hafner, J., From Hamiltonians to Phase Diagrams (Springer: Berlin, 1987).Google Scholar
18. Daw, M. S. and Baskes, M. I., Phys.Rev.Lett. 50 1285 (1983); Phys.Rev.B 29 6443 (1984)Google Scholar
19. Finnis, M. W. and Sinclair, J. E., Phil.Mag.A 50, 45, (1984).Google Scholar
20. Ackland, G. J., Tichy, G., Vitek, V. and Finnis, M.W., Phil.Mag.A, 56, 735, (1987).Google Scholar
21. Johnson, R. A., Phys. Rev. B 37, 3924, (1988).Google Scholar
22. Carlson, A. E., Solid Sate Physics, edited by Ehrenreich, H. and Turnbull, D., Vol. 43, p. 1 (1990).Google Scholar
23. Moriarty, J. A., Phys. Rev. B 38, 3199 (1988); Phys. Rev. B, to be published (1990).Google Scholar
24. Machlin, E. S., in Theory of Alloy Phase Formation, edited by Bennett, L. H. (The Metallurgical Society of AIME, Warrendale, PA, 1980), p. 127.Google Scholar
25. Maeda, K., Vitek, V. and Sutton, A. P., Acta Metall. 30, 2001, (1982).Google Scholar
26. Vitek, V. and Minonishi, Y., Surf. Science 144, 196, (1984).Google Scholar
27. Ackland, G. J. and Vitek, V., Phys. Rev. B, 41, 10324, (1990).Google Scholar
28. Ackland, G. J., Finnis, M. W. and Vitek, V., J.Phys.F 18, L153, (1988).Google Scholar
29. Ackland, G. J. and Vitek, V., in High-Temperature Ordered Intermetallic Alloys II, edited by Liu, C.T., Taub, A.I., Stoloff, N.S. and Koch, C. C. (Mater. Res. Soc. Proc., Vol. 133, Pittsburgh, PA, 1986), p. 105.Google Scholar
30. Vitek, V., J. Phys. Appl. Paris, in press (1990).Google Scholar
31. Foiles, S. M., Baskes, M. I. and Daw, M. S., Phys. Rev. B 33, 7983, (1986).Google Scholar
32. Hultgren, R., Orr, R. L., Anderson, P. D. and Kelley, K. K., Selected values of the Thermodynamic Properties of.Metals and Binary Alloys. (Wiley, New York, 1963).Google Scholar
33. Marcinkowski, M. J., Brown, N. and Fisher, R. M., Acta Metall. 9, 129, (1961).Google Scholar
34. Sastry, S. M. L. and Ramaswami, B., Phil. Mag. 33, 375, (1976).Google Scholar
35. Taylor, R., in Interatomic Potentials and Lattice Defects, edited by Lee, J. K. (The Metallurgical Society of AIME, Warrendale, PA, 1981), p. 71.Google Scholar
36. Douin, J., Veyssiere, P. and Beauchamp, P., Phil. Mag. A 55, 565, (1987).Google Scholar
37. Yamaguchi, M., Paidar, V., Vitek, V. and Pope, D. P., Phil. Mag. A 45, 867, (1982).Google Scholar
38. Yamaguchi, M., Pope, D. P., Vitek, V. and Umakoshi, Y.. Phil. Mag. A 43, 1265, (1981).Google Scholar
39. Tichy, G., Vitek, V. and Pope, D. P., Phil. Mag. A 53, 467, (1986).Google Scholar
40. Pope, D. P. and Ezz, S. S., Int. Metals Rev. 29, 136, (1984).Google Scholar
41. Pope, D. P. and Vitek, V., in High-Temperature Ordered Intermetallic Alloys I, edited by Koch, C. C., Liu, C. T. and Stoloff, N. S. (Mater. Res. Soc. Proc., Vol. 39, Pittsburgh, PA, 1985), p. 136.Google Scholar
42. Paidar, V., Pope, D. P. and Vitek, V., Acta Metall. 32, 435, (1984).Google Scholar
43. Yadogawa, M., Wee, D. M., Oya, Y. and Suzuki, T., Scripta Metall. 14, 849, (1980).Google Scholar
44. Wee, D. M., Pope, D.P. and Vitek, V., Acta Metall. 32, 829, (1984).Google Scholar
45. Heredia, F. E., Tichy, G., Pope, D. P. and Vitek, V., Acta Metall. 37, 2755, (1989).Google Scholar
46. Tichy, G., Vitek, V. and Pope, D. P., Phil. Mag. A 53, 485, (1986).Google Scholar
47. Vitek, V., Crystal Lattice Defects 5, 1, (1976).Google Scholar
48. Farkas, D. and Savino, E. J., Scripta Metall. 22, 557, (1988).Google Scholar
49. Yoo, M. H., Daw, M. S. and Baskes, M. I., in Atomistic Simulation of Materials: Beyond Pair Potentials, edited by Vitek, V. and Srolovitz, D. J. (Plenum Press, New York, 1989), p. 401.Google Scholar
50. Takasugi, T., J. Phys. Paris 49, C5811 (1988).Google Scholar
51. Liu, C. T., in Interfacial Structure, Properties and Design, edited by Yoo, M.H., Clark, W.A.T. and Briant, C.L. (Mater. Res. Soc. Proc., Vol. 122, Pittsburgh, PA, 1988), p. 139.Google Scholar
52. Izumi, O. and Takasugi, T., J. Mater. Research 3, 426, (1988).Google Scholar
53. Briant, C. L., J. Phys. France 49, C53 (1988).Google Scholar
54. McMahon, C. J. Jr., in Grain Boundary Chemistry and Intergranular Fracture, edited by Was, G. S. and Bruemmer, S. M., Mat. Sci. Forum 46, 61, (1989).Google Scholar
55. Kruisman, J. J., Vitek, V. and DeHosson, J.Th. M., Acta Metall. 36, 2729, (1988).Google Scholar
56. Chen, S. P., Srolovitz, D. J. and Voter, A. F., J. Mater. Res. 4, 62, (1989).Google Scholar
57. Vitek, V., Chen, S. P., Voter, A. F., Kruisman, J. J. and DeHosson, J. Th. M., in Grain Boundary Chemistry and Intergranular Fracture, edited by Was, G. S. and Bruemmer, S. M., Mat. Sci. Forum 46, 237, (1989).Google Scholar
58. Schulson, E. M., Baker, I. and Frost, H. J., in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T. and Izumi, O. (Mater. Res. Soc. Proc. Vol. 81, Pittsburgh, PA, 1987), p. 135.Google Scholar
59. King, A. H. and Yoo, M. H., in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N.S., Koch, C.C., Liu, C.T. and Izumi, O. (Mater. Res. Soc. Proc. Vol. 81, Pittsburgh, PA, 1987), p. 99.Google Scholar