Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T07:44:22.183Z Has data issue: false hasContentIssue false

Atomistic Simulation on Hydrogen Storage in Metallic Nanoparticles

Published online by Cambridge University Press:  31 January 2011

Hiroshi Ogawa
Affiliation:
h.ogawa@aist.go.jp, National Institute of Advanced Industrial Science and Technology, Research Institute for Computational Sciences, Tsukuba, Ibaraki, Japan
Megumi Kayanuma
Affiliation:
megumi-kayanuma@aist.go.jp, National Institute of Advanced Industrial Science and Technology, Research Institute for Computational Sciences, Tsukuba, 305-8568, Japan
Masahiko Katagiri
Affiliation:
katagiri.masahiko@nims.go.jpmasa.katagiri@nifty.com, National Institute for Materials Science, Tsukuba, Japan
Get access

Abstract

Hydrogen storage in metallic nanoparticles was investigated by classical molecular dynamics and parameter physics. We observed phenomenological variation due to the differences in potential parameters of metal-hydrogen pair and crystal lattices. Three patterns of hydrogen distribution in both b.c.c. and f.c.c. nanoparticles were observed: non-absorbing, homogeneously-absorbing and heterogeneously-absorbing. In the last case, hydrogen atoms distribute just beneath the particle surface to form a hydrogen-rich layer. This layer prevents the diffusive motions of hydrogen atoms into the nanoparticle. We also carried out long simulation runs up to 1 nm to observed the structural variation of nanoparticles due to hydrogenation. Generation of grain boundaries was observed in b.c.c nanoparticles with the condition of strong metal–hydrogen interaction. Most of the grain boundaries were symmetric-tilt type and migrated inside the particle to reduce the interface energies. Formation of grain boundary was not observed in f.c.c. nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mutschele, T., Kirchheim, R., Scr. Metall. 21, 1101 (1987).Google Scholar
2. Stuhr, U., Wipf, H., Udovic, T.J., Weissmuller, J., Gleiter, H., J. Phys. Cond. Matter, 7, 219, (1995).Google Scholar
3. Zluski, L., Zaluska, A., Olsen, J. O. Ström-Olsen, J. Alloys Comp Comp. 253–4, 70, (1997).Google Scholar
4. Natter, H., Wettmann, B., Heisel, B., Hempelmann, R., J. Alloys Comp. Comp., 253–4, 84, (1997).Google Scholar
5. Pundt, A., Sachs, C., Winter, M., Reetz, M.T., Fritsch, D., Kirchheim, R., J. Alloy Comp., 293–5, 480 (1999).Google Scholar
6. Suleiman, M., Jisrawi, N. M., Dankert, O., Reetz, M. T., Bähtz, C., Kirchheim, R. Pundt, A., J. Alloy Comp., 356–7, 644 (2003).Google Scholar
7. Pundt, A. Kirchheim, R. Ann. Rev. Mater. Res., 36, 555 (2006).Google Scholar
8. Daw, M. S. Baskes, M. I. Phys. Rev. B29, 6443 (1984).Google Scholar
9. Fukai, Y. The Metal Hydrogen System, Chapter 7 (Springer, 1993).Google Scholar
10. Løvvik, O. M., Opalka, S. M. Phys. Rev B71, 054103 (2005).Google Scholar
11. Ogawa, H. Tezuka, A. Wang, H. Ikeshoji, T. Katagiri, M. Mater. Trans., 49, 1983 (2008).Google Scholar
12. Ogawa, H. Tezuka, A. Wang, H. Ikeshoji, T. Katagiri, M. Int. J. Nanosci., 8, 39 (2009).Google Scholar
13. Finnis, M. W. Sinclair, J. E. Phil. Mag. A50, 45 (1984).Google Scholar
14. Ruda, M. Farkas, D. J. Abriata, Phys. Rev. B54, 9765, (1996).Google Scholar
15. Ogawa, H., Mater. Trans., 48, 2067, (2007).Google Scholar
16. Ogawa, H. Molec. Simul., 33, 159, (2007).Google Scholar
17. Griessen, R. Driessen, A. Phys. Rev. B v. B30, 4372, (1984).Google Scholar
18. Ishido, Y. Nomura, K. Ono, S. Denki Kagaku, 46, 620 (1978).Google Scholar