Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T14:05:04.824Z Has data issue: false hasContentIssue false

Atomistic simulations of threshold displacement energies in SiO2

Published online by Cambridge University Press:  01 February 2011

F. Mota
Affiliation:
Instituto de Fusión Nuclear, Universidad Politécnica, Madrid, Spain
M.-J. Caturla
Affiliation:
Instituto de Fusión Nuclear, Universidad Politécnica, Madrid, Spain Universidad de Alicante, Dep. Física Aplicada, Alicante, Spain
J.M. Perlado
Affiliation:
Instituto de Fusión Nuclear, Universidad Politécnica, Madrid, Spain
E. Dominguez
Affiliation:
Instituto de Fusión Nuclear, Universidad Politécnica, Madrid, Spain
A. Kubota
Affiliation:
Lawrence Livermore National Laboratory, Livermore CA, USA.
Get access

Abstract

Silica is one of the candidate materials for final focusing mirrors in inertial fusion reactors. This material will be exposed to high neutron irradiation fluxes during operation. Radiation damage results in point defects that can lead to obscuration of this material; that is, degradation of the optical properties of silica. In this paper we present molecular dynamic simulations of defect production in silica glass. Results on the threshold displacement energies due to oxygen Primary Knock-on Atoms (PKA) are reported concluding that a range of energies (20–40 eV) exists in which the defects have a probability to be created. In addition, we determine a range of distances for a PKA to become a stable defect out of its original position. Our present analysis is focused on the formation of Oxygen Deficient Centers (ODC).

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Griscom, D. L., J. Ceram. Soc. Jpn. 99, 923 (1991)Google Scholar
[2] Devine, R. A. B., Nucl. Instrum. Meth. B, 46, 244 (1990)Google Scholar
[3] Marshall, C. D., Speth, J. A., Payne, S. A., J. Non-Cristal. Solids 212, 59 (1997)Google Scholar
[4] Devine, R. A. B., IEEE Trna. Nucl. Sci. 41, 452 (1994)Google Scholar
[5] Averback, R. S., Rubia, T. Diaz de la, Solid State Phys. 51 (1998) 281 Google Scholar
[6] Feuston, B.P., Garofalini, S.H.. Journal Chemistry Physics, Vol. 89, No. 9. 1 1988 Google Scholar
[7] Stillinger, F.H, Weber, T.A., Phys. Rev. B31 (1985) 5262–71Google Scholar
[8] Kubota, A., Caturla, M.J., Stolken, J.S., Feit, M.D.. OPTICs EXPRESS, 8(2001)Google Scholar
[10] Vashista, P., Kalia, Rajiv K., Rino, José P.. PHYSICAL REVIEW B V41N17 (1990) 197 Google Scholar
[11] Kubota, A., Caturla, M.-J., Payne, S.A., Rubia, T. Diaz de la, Latkowski, J.F.. Journal of Nuclear Materials 307–311 (2002) 891894 Google Scholar