No CrossRef data available.
Published online by Cambridge University Press: 21 March 2011
The stability of elongated single- and multi-layered graphene nanoribbons (GNRs) are investigated by molecular-dynamics simulation. In order that GNRs are to be modeled as nanobridges connecting two terminals of electronic devices, the short edges of the GNRs are constrained. The distances between the two constrained edges are gradually increased, and the GNRs are uniaxially strained. The energies and out-of-plane deformations of such uniaxially strained GNRs are examined. The energies of multi-layered GNRs will be lower than those of isolated GNRs because the surface areas of multi-layered GNRs are smaller than the total area of the isolated GNRs. Understanding the relationship between the out-of-plane deformations and strain will lead to the control of the ripple structures of GNRs.