Published online by Cambridge University Press: 28 February 2013
Nanostructuring has been the foremost approach to the manufacture of high-performance thermoelectric materials for nearly a decade. This study explores a novel nanostructuring technique, attrition-enhanced nanocomposite synthesis, in maximum indium-filled, iron-substituted cobalt antimonide skutterudites. In0.3Fe0.8Co3.2Sb12 was synthesized and subjected to varying degrees of mechanical attrition (via ball milling). These samples exhibited increased indium precipitation coincident with the duration of mechanical attrition. Indium readily diffused through the skutterudite crystal structure and rapidly precipitated forming 20-50 nm-sized indium-rich inclusions during sintering.