Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T01:47:07.819Z Has data issue: false hasContentIssue false

Availability of Liquid Crystalline Materials for Organic Polycrystalline Semiconductor Thin Films

Published online by Cambridge University Press:  26 February 2011

Hiroaki Iino
Affiliation:
iino@isl.titech.ac.jp, Tokyo Institute of Technology, Imaging Science and Engineering Laboratory, J1-2, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
Jun-ichi Hanna
Affiliation:
hanna@isl.titech.ac.jp, Tokyo Institute of Technology, Imaging Science and Engineering Laboratory, J1-2, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
Get access

Abstract

We have investigated the charge carrier transport properties of polycrystalline films fabricated with discotic and calamitic liquid crystals. The polycrystalline films of these liquid crystals exhibiting particular textures under a polarized microscope, i.e., hexagonal and co-circular patterns for discotic and calamitic liquid crystals, respectively, which indicate that the molecular alignment in the liquid crystalline phase is well preserved exhibit clear hole transport along with molecular stacks even in a 15 μm thick film, judging from transient photocurrents by time of flight method. The hole mobilities are over 0.1 cm2/Vs at room temperature. These results indicate formation of fewer grain boundaries across conduction channels. On the other hand, the carrier transport properties in the polycrystalline films of non-liquid crystalline molecules with the same molecular shape exhibit no particular patterns as described and photocurrents are annihilated in the bulk as a function of time, indicating many deep trap sites in grain boundaries. The present results indicate that the liquid crystalline molecule is a good candidate for preparing quality organic polycrystalline semiconductor thin films in opto-electronic applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nelson, S. F., Lin, Y.-Y., Gundlach, D. J., and Jackson, T. N., Appl. Phys. Lett. 72, 1854 (1998).Google Scholar
2. Horowitz, G. and Hajlaoui, M. E., Adv. Mater. 12, 1046 (2000).Google Scholar
3. Meyer, F.-J., Heringdorf, Z., Reuter, M. C., and Tromp, R. M., Nature (London) 412, 517 (2001).Google Scholar
4. Ackermann, J., Videlot, C., Raynal, P., Kassmi, A. El, and Dumas, P., Appl. Surf. Sci. 212, 26 (2003).Google Scholar
5. Hou, J. G., Xu, W., Haiqian, W., and Li, Y., J. Appl. Phys. 84, 2906 (1998).Google Scholar
6. Adam, D., Schuhmacher, P., Simmerer, J., Haussling, L., Siemensmeyer, K., Etzbach, K. H., Ringsdorf, H., and Haarer, D., Nature (London) 371, 141 (1994).Google Scholar
7. Iino, H., Takayashiki, Y., Hanna, J., and Bushby, R. J., Jpn. J. Appl. Phys. 44, L1310 (2005).Google Scholar
8. Mcculloch, I., Heeney, M., Bailey, C., Genevicius, K., Mcdonald, I., Shkunov, M., Sparrowe, D., Tierney, S., Wagner, R., Zhang, W., Chabinyc, M. L., Kline, R. J., Mcgehee, M. D., and Toney, M. F., Nature Materials (London) 5, 328 (2006).Google Scholar
9. Maeda, H., Funahashi, M., and Hannna, J., Mol. Cryst. Liq. Cryst. 366, 369 (2001).Google Scholar
10. Vlachos, P., Mansoor, B., Aldred, M. P., O'Neill, M., and Kelly, S. M., Chem. Commun. 2005, 2921 (2005).Google Scholar
11. Funahashi, M. and Hanna, J.: Appl. Phys. Lett. 76, 2574 (2000).Google Scholar
12. Iino, H. and Hanna, J., Jpn. J. Appl. Phys. 45, L867 (2006).Google Scholar
13. Hoesterey, D. C. and Letson, G. M., J. Phys. Chem. Solids 24, 1609 (1963).Google Scholar
14. Funahashi, M. and Hanna, J., Chem. Phys. Lett. 397, 319 (2004).Google Scholar
15. Ahn, H., Ohno, A., and Hanna, J., Jpn. J. Appl. Phys. 44, 3764 (2005).Google Scholar
16. Iino, H., Takayashiki, Y., Hanna, J., Bushby, R. J., and Haarer, D., Appl. Phys. Lett. 87, 192105 (2005).Google Scholar
17. Karl, N., Synth. Met. 133, 649 (2003).Google Scholar
18. Maeda, H., Funahashi, M., and Hanna, J., Mol. Cryst. Liq. Cryst. 346, 183 (2000).Google Scholar
19. Ohno, A., Fujita, H., Hanna, J., and Movaghar, B., unpublishedGoogle Scholar