Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T14:02:24.028Z Has data issue: false hasContentIssue false

Band Tails and Thermal Disorder in Doped and Undoped Hydrogenated Amorphous Silicon and Silicon-Germanium Alloys

Published online by Cambridge University Press:  25 February 2011

Samer Aljishi
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-7000 Stuttgart 80, Federal Republic of Germany.
J. David Cohen
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-7000 Stuttgart 80, Federal Republic of Germany.
Shu Jin
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-7000 Stuttgart 80, Federal Republic of Germany.
Lothar Ley
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-7000 Stuttgart 80, Federal Republic of Germany.
Get access

Abstract

The energy distribution and temperature dependence of the conduction and valence band tail density of states in a-Si:H and a-Si,Ge:H alloys is determined via total yield photoelectron spectroscopy. All films are observed to possess purely exponential conduction and valence band tail densities of states; however, the characteristic energy of the conduction band tail increases much more rapidly with temperature in the range of 300K to 550K than that of the valence band tail. This indicates that over that temperature range the conduction band tail is considerably more susceptible to thermal disorder than to structural disorder whereas the reverse holds for the valence band tail.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cody, G.D., in Semiconductors and Semimetals vol. 21B, ed. by Pankove, J. (Academic Press, New York 1984) p. 11.Google Scholar
Ley, L. in Hydrogenated Amorphous Silicon II, ed. by Joannopoulos, J.D. and Lucovsky, G. (Springer, Berlin 1984) p. 61.Google Scholar
Grein, C.H. and John, S., Phys. Rev. B36 (1989) 1140.Google Scholar
Tiedje, T., in ref. 1, Vol. 21C, p.207.Google Scholar
5. Winer, K., Hirabayashi, I. and Ley, L., Phys. Rev. Lett. 60 (1988) 2697.Google Scholar
6. Aljishi, S., Jin, Shu and Ley, L., Mat. Res. Soc. Symp. Proc. 149 (1989) 125.Google Scholar
7. Jackson, W.B., Kelso, W.M., Tsai, C.C., Allen, J.W., and Oh, S.J., Phys. Rev. B 31 (1985) 5187.Google Scholar
8. Winer, K. and Ley, L. in Advances in Amorphous Semiconductors-Amorphous Silicon and Related Materials, ed. by Fritzsche, H. (World Scientific, Singapore, 1988), vol. 1, p.365.Google Scholar
9. Aljishi, S., Cohen, J.D. and Ley, L., J. Non-Cryst. Solids 114 (1989) 247.Google Scholar
10. Street, R.A., Kakalios, J. and Hack, M., Phys. Rev. B38 (1988) 5603.Google Scholar
11. Overhof, H. in Disordered Semiconductors, ed. by Kastner, M.A., Thomas, G.A., and Ovshinsky, S.R. (Plenum, New York 1987), p. 317.Google Scholar
12. Lotter, E. and Bauer, G.H., J. Non-Cryst. Solids 114 (1989) 322.Google Scholar
13. Kurik, M.V., Phys. Stat. Sol. (a) 8 (1971) 9.Google Scholar
14. Adler, D. and Joannopoulos, J., ref. 2, p. 5.Google Scholar
15. Bar-Yam, Y., Adler, D., and Joannopoulos, J., Phys. Rev. Lett. 57 (1986) 467.Google Scholar
16. Wang, Xiaomei, Bar-Yam, Y., Adler, D., and Joannopoulos, J., Phys. Rev. B38 (1988) 1601.Google Scholar
17. Smith, Z E. and Wagner, S., Phys. Rev. Lett. 59 (1987) 688.Google Scholar
18. MacKenzie, K.D., Burnett, J.H., Eggert, J.R., Li, Y.M. and Paul, W., J. Non-Cryst. Solids 97&98 (1987) 1019.Google Scholar
19. Wronski, C.R., Persans, P.D., and Abeles, B., Appl. Phys. Lett (1985) 569.Google Scholar
20. Conde, J.P., Aljishi, S., Shen, D.S., Chu, V., Smith, Z E. and Wagner, S., Mat. Res. Soc. Symp. Proc. 95 (1987) 369.Google Scholar
21. Evangelisti, F., J. Non-Cryst. Solids 77&78 (1985) 969.Google Scholar
22. Weiser, G. and Mell, H., J. Non-Cryst. Solids 114 (1989) 298.Google Scholar