Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T12:25:21.729Z Has data issue: false hasContentIssue false

Bandgap Engineering of Double Perovskites for One- and Two-photon Water Splitting

Published online by Cambridge University Press:  22 March 2013

Ivano E. Castelli
Affiliation:
Center for Atomic-scale Materials Design, Department of Physics, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark.
Kristian S. Thygesen
Affiliation:
Center for Atomic-scale Materials Design, Department of Physics, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark.
Karsten W. Jacobsen
Affiliation:
Center for Atomic-scale Materials Design, Department of Physics, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark.
Get access

Abstract

Computational screening is becoming increasingly useful in the search for new materials. We are interested in the design of new semiconductors to be used for light harvesting in a photoelectrochemical cell. In the present paper, we study the double perovskite structures obtained by combining 46 stable cubic perovskites which was found to have a finite bandgap in a previous screening-study.1 The four-metal double perovskite space is too large to be investigated completely. For this reason we propose a method for combining different metals to obtain a desired bandgap. We derive some bandgap design rules on how to combine two cubic perovskites to generate a new combination with a larger or smaller bandgap compared with the constituent structures. Those rules are based on the type of orbitals involved in the conduction bands and on the size of the two cubic bandgaps. We also see that a change in the volume has an effect on the size of the bandgap. In addition, we suggest some new candidate materials that can be used as photocatalysts in one- and two-photon water splitting devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Castelli, I.E., Olsen, T., Datta, S., Landis, D.D., Dahl, S., Thygesen, K.S. and Jacobsen, K.W., Energy Environ. Sci., 2012, 5, 5814.CrossRefGoogle Scholar
Olivares-Amaya, R., Amador-Bedolla, C., Hachmann, J., Atahan- Evrenk, S., Sanchez-Carrera, R.S., Vogt, L. and Aspuru-Guzik, A., Energy Environ. Sci., 2011, 4, 4849.10.1039/c1ee02056kCrossRefGoogle Scholar
O’Boyle, N.M., Campbell, C.M. and Hutchison, G.R., J. Phys. Chem. C, 2011, 115, 16200.CrossRefGoogle Scholar
Armiento, R., Kozinsky, B., Fornari, M. and Ceder, G., Phys. Rev. B, 2011, 84, 14103.10.1103/PhysRevB.84.014103CrossRefGoogle Scholar
d’Avezac, M., Luo, J.-W., Chanier, T. and Zunger, A., Phys. Rev. Lett., 2012, 108, 027401.Google Scholar
Castelli, I.E., Landis, D.D., Thygesen, K.S., Dahl, S., Chorkendorff, I., Jaramillo, T.F., and Jacobsen, K.W., Energy Environ. Sci., 2012, 5, 9034.CrossRefGoogle Scholar
Wu, Y., Lazic, P., Hautier, G., Persson, K. and Ceder, G., DOI: 10.1039/C2EE23482C.10.1039/C2EE23482CCrossRefGoogle Scholar
Kobayashi, K.-I., Kimura, T., Sawada, H., Terakura, K. and Tokura, Y., Nature, 1998, 395, 677.10.1038/27167CrossRefGoogle Scholar
Song, Z.W., and Liu, B.G., arXiv:1210.5981 Google Scholar
Berger, R.F. and Neaton, J.B., arXiv:1209.2187 Google Scholar
Mortensen, J.J., Hansen, L.B. and Jacobsen, K.W., Phys. Rev. B, 2005, 71, 35109.CrossRefGoogle Scholar
Enkovaara, J., et al. ., J. Phys.: Condens. Matter, 2010, 22, 253202.Google Scholar
Hammer, B., Hansen, L.B. and Nørskov, J.K., Phys. Rev. B, 1999, 59, 7413.CrossRefGoogle Scholar
Materials Project - A Materials Genome Approach, http://materialsproject.org/ Google Scholar
Gritsenko, O., van Leeuwen, R., van Lenthe, E. and Baerends, E.J., Phys. Rev. A, 1995, 51, 1944.10.1103/PhysRevA.51.1944CrossRefGoogle Scholar
Wu, Y., Chan, M.K.Y., and Ceder, G., Phys. Rev. B, 2011, 83, 235301 .10.1103/PhysRevB.83.235301CrossRefGoogle Scholar
Butler, M.A. and Ginley, D.S., Journal of The Electrochemical Society, 1978, 125, 228.10.1149/1.2131419CrossRefGoogle Scholar
Castelli, I.E., Thygesen, K.S. and Jacobsen, K.W., in preparation.Google Scholar