Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-13T12:31:57.082Z Has data issue: false hasContentIssue false

The Behavior of a TiO2 Nanoparticle under Extreme Conditions

Published online by Cambridge University Press:  22 May 2012

J. E. Lowther*
Affiliation:
School of Physics and DST / NRF Centre of Excellence in Strong Materials, University of the Witwatersrand. Johannesburg, South Africa.
Get access

Abstract

Compressibility of anatase nano particles of TiO2 changes from the bulk counterpart. This has been associated with amorphization and compaction. The behavior of such systems under extreme conditions is examined using a shell partial distribution function and some comparison made with rutile and baddeylite polytypes based nano structures. Particle energies of rutile and baddeylite nano particles appear to be rather size independent as compared to the anatase polytypes. The latter is associated with large relaxations and re-bonding in the relatively soft anatase phase of nano TiO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dubrovinsky, L. S., Dubrovinskaia, N. A., Swamy, V., Muscat, J., Harrison, N. M., Ahuja, R., Holm, B. and Johansson, B., Nature 410, 653 (2001).Google Scholar
2. Muscat, J., Swamy, V. and Harrison, N. M., Phys. Rev. B 65, 224112 (2002).Google Scholar
3. Wang, Z. W. and Saxena, S. K., Solid State Communications 118, 75 (2001).Google Scholar
4. Swamy, V., Dubrovinsky, L. S., Dubrovinskaia, N. A., Langenhorst, F., Simionovici, A. S., Drakopoulos, M., Dmitriev, V. and Weber, H. P., Solid State Communications 134, 541 (2005).Google Scholar
5. Van Hoang, V., Journal of Physics D-Applied Physics 40, 7454 (2007).Google Scholar
6. Sayle, D. C. and Sayle, T. X. T., Journal of Computational and Theoretical Nanoscience 4, 299 (2007).Google Scholar
7. Holbig, E., Dubrovinsky, L., Miyajima, N., Swamy, V., Wirth, R., Prakapenka, V. and Kuznetsov, A., Journal of Physics and Chemistry of Solids 69, 2230 (2008).Google Scholar
8. Swamy, V., Holbig, E., Dubrovinsky, L. S., Prakapenka, V. and Muddle, B. C., Journal of Physics and Chemistry of Solids 69, 2332 (2008).Google Scholar
9. Pischedda, V., Hearne, G., Dawe, A. and Lowther, J., Physical Review Letters 96, 035509 (2006).Google Scholar
10. Machon, D., Daniel, M., Pischedda, V., Daniele, S., Bouvier, P. and LeFloch, S., Physical Review B 82, 140102 (2010).Google Scholar
11. Wu, X. A., Holbig, E. and Steinle-Neumann, G., Journal of Physics-Condensed Matter 22, 295501 (2010).Google Scholar
12. Kresse, G. and Hafner, J., Phys. Rev. B 47, 558 (1993).Google Scholar
13. Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. (Erratum) 78, 1396 (1997).Google Scholar
14. Dewhurst, J. K. and Lowther, J. E., Phys. Rev. B 54, R3673 (1997).Google Scholar
15. Bandura, A. V. and Kubicki, J. D., J. Phys. Chem. B 107, 11072 (2003).Google Scholar
16. Roux, H. l. and Glasser, L., J. Mater. Chem. 7, 853 (1997).Google Scholar
17. Smith, W. and Forester, T., J. Molecular Graphics 14, 136 (1996).Google Scholar