Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-29T23:52:35.909Z Has data issue: false hasContentIssue false

A B.F.S. Method Survey of Surface and Interfacial Properties of Multicomponent Metallic Systems

Published online by Cambridge University Press:  10 February 2011

G. Bozzolo
Affiliation:
Ohio Aerospace Institute, 22800 Cedar Point Road, Cleveland, Ohio 44142.
J. Ferrante
Affiliation:
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH 44135 and Department of Physics, Cleveland State University, Cleveland, OH 44115.
B. Good
Affiliation:
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH 44135.
Get access

Abstract

Computer modeling of atomic processes on surfaces and bulk materials has seen noticeable growth due to the availability of new, powerful semiempirical techniques that provide both the numerical simplicity, physical foundation and computational efficiency necessary for the study of complex systems. In an attempt to partially summarize the current status of this work, we apply one of these techniques, the BFS method for alloys, to the study of several basic topics in surface structure and analysis: surface energies of alloy surfaces, multilayer relaxation of ordered alloy surfaces, temperature-dependent segregation profiles, surface alloying and thin film growth of multicompo-nent systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bozzolo, G. and Ferrante, J., J. Computer-Aided Mater. Design 2 (1995) 113.Google Scholar
[2] Bozzolo, G. and Ferrante, J., Phys. Rev. B 45 (1992) 495.Google Scholar
[3] Bozzolo, G. and Ferrante, J., Ultramicroscopy 42–44 (1992) 55.Google Scholar
[4] Bozzolo, G., Amador, C., Ferrante, J. and Noebe, R. D., Scripta Metall. 33 (1995) 1907;Google Scholar
Bozzolo, G., Noebe, R. D., Ferrante, J., Garg, A. and Amador, C., MRS Symp. Proc. 460 (1997) 443.Google Scholar
[5] Bozzolo, G., Ibanez-Meier, R. and Ferrante, J., Phys. Rev. B 51 (1995) 7207;Google Scholar
Bozzolo, G., Ferrante, J. and Ibanez-Meier, R., Surf. Sci. 352–354 (1996) 577.Google Scholar
[6] Bozzolo, G., Good, B. and Ferrante, J., Surf. Sci. 289 (1993)169.Google Scholar
[7] Bozzolo, G. and Ferrante, J., Phys. Rev. B 50 (1994) 5971.Google Scholar
[8] Smith, J. R., Perry, T., Banerjea, A., Ferrante, J. and Bozzolo, G., Phys. Rev. B 44 (1991) 6444;Google Scholar
Bozzolo, G., Ferrante, J. and Rodriguez, A. M., J. Computer-Aided Mater. Design 1 (1993) 285.Google Scholar
[9] Rose, J. H., Smith, J. R. and Ferrante, J., Phys. Rev. B 28 (1983) 1835.Google Scholar
[10] See, for example, Andersen, O. K., Postnikov, A. V. and Savrasov, S. Y., Mat. Res. Soc. Symp. Proc. 253 (1992) 37.Google Scholar
[11] Davis, H. L. and Noonan, J. R., Phys. Rev. Lett. 54 (1985) 566.Google Scholar
[12] Chen, S. P., Voter, A. F. and Srolovitz, D. J., Phys. Rev. Lett. 52 (1986) 1308;Google Scholar
Foiles, S. M. and Daw, M. S., J. Mater. Res. 2 (1987) 5;Google Scholar
Foiles, S. M., Surf. Sci. 191 (1987) 329.Google Scholar
[13] Lundberg, M., Phys. Rev. B36 (1987) 4692.Google Scholar
[14] Buck, T. M., Wheatley, G. H. and Marchut, L., Phys. Rev. Lett. 51 (1983) 43.Google Scholar
[15] Sondericker, D., Jona, F. and Marcus, P. M., Phys. Rev. B33 (1986) 900.Google Scholar
[16] Whang, Q., Li, Y. S., Lok, C. K. C., Quinn, J., Jona, F., Marcus, P. M., Solid State Commun. 62 (1987) 181.Google Scholar
[17] Rodriguez, A. M., Bozzolo, G. and Ferrante, J., Surf. Sci. 289 (1993) 100.Google Scholar
[18] Foiles, S. M., Baskes, M. I. and Daw, M. S., Phys. Rev. B 33 (1986) 7983.Google Scholar
[19] Ouannasser, S., Wille, L.T. and Dreysse, H., Phys. Rev. B 55 (1997) 14245;Google Scholar
Hofer, W. and Mezey, L.Z., Mikrochimica Acta 125 (1997) 93.Google Scholar
[20] Mezey, L. Z. and Hofer, W., Surf. Sci. 352–354 (1996) 15;Google Scholar
Hofer, W. and Mezey, L. Z., Fresenius J. Anal. Chem. 353 (1995) 631.Google Scholar
[21] Good, B., Bozzolo, G. and Ferrante, J., Phys. Rev B48 (1993) 18284, and references therein.Google Scholar
[22] Wandelt, K. and Brundle, C.R., PRL 46(1981)1529 Google Scholar
[23] Lee, K. S., Kim, S. H., Min, H. G., Seo, J. and Kim, J. S., Surf. Sci. 377–379 (1997) 918;Google Scholar
Christensen, A., Ruban, A. V., Stoltze, P., Jacobsen, K. W., Skriver, H. L., Norskov, J. K. and Besen-bacher, F., PRB 56(1997) 5822.Google Scholar
[24] Pleth Nielsen, L., Besenbacher, F., Stensgaard, I., Laegsgaard, E., Engdahl, C., Stoltze, P., Jacobsen, K. W. and Norskov, J. K., Phys. Rev. Lett. 71 (1993) 754757.Google Scholar
[25] Stevens, J. L. and Hwang, R. Q., Phys. Rev. Lett. 74 (1995) 20782081;Google Scholar
Robert, S., Gauthier, S., Bocquet, F., Rousset, S., Duvault, J.L. and Klein, J., Surf. Sci. 350 (1996)136144;Google Scholar
Engdahl, C., Stoltze, P., Jacobsen, K. W., Norskov, J. K., Skriver, H. L., J. Vac. Sci. Technol. A12 (1994) 17871789;Google Scholar
Schulze, R. K., Taylor, T. N. and Paffett, M. T., J. Vac. Sci. Technol. A 12 (1994) 30543061.Google Scholar
[26] Smith, R. J., Saleh, A. A., Shutthanandan, V., Shivaparan, N. R. and Krasemann, V., MRS Symp. Proc. 399 (1996) 135.Google Scholar
[27] Johnson, D. R., Chen, X. F., Oliver, B. F., Noebe, R. D. and Whittenberger, J. D., Intermetallics 3 (1995)99.Google Scholar
[28] Ross, W. D., du Plessis, J., van Wyk, G. N., Taglauer, E. and Wolf, S., J. Vac. Sci. Technol. A 14 (1996) 1648.Google Scholar