Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T11:07:07.948Z Has data issue: false hasContentIssue false

Bilinear and Biquadratic Exchange Coupling in Fe(110)/Cr/Fe Trilayers

Published online by Cambridge University Press:  15 February 2011

H.J. Elmers
Affiliation:
Physikalisches Institut, Technische Universität Clausthal, 38678 Clausthal, Germany
J. Schwabenhausen
Affiliation:
Physikalisches Institut, Technische Universität Clausthal, 38678 Clausthal, Germany
T. Dürkop
Affiliation:
Physikalisches Institut, Technische Universität Clausthal, 38678 Clausthal, Germany
Get access

Abstract

The indirect exchange coupling in W(110)/Fe/Cr/Fe/Cr trilayers was determined by analysis of magnetization curves measured by Kerr magnetometry. We adjusted the uniaxial in-plane anisotropies in the two Fe layers in such a way that the easy axes were orthogonal, [001] in the 1st, [110] in the 2nd layer. This allows an independent determination of both bilinear (i) and biquadratic (J2) coupling constants. We determined tJ and J2 as a function of Cr interlayer thickness (tcT = 0 – 4 nm), preparation temperature of the interlayer Tcr=100 – 500 K, and as a function of temperature (T = 100 – 300 K). Results for the exchange coupling are correlated to the particular lateral thickness fluctuation of the Cr spacer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Grünberg, P., Schreiber, R., Pang, Y., Brodsky, M.B., and Sowers, H., Phys. Rev. Lett. 57, 2442 (1986).Google Scholar
[2] Bland, J.A.C., Heinrich, B. (Eds.), Ultrathin Magnetic Structures, Vol. II, Springer, Berlin, 1994, pp. 45186.Google Scholar
[3] Unguris, J., Celotta, R.J., and Pierce, D.T., Phys. Rev. Lett. 67, 140 (1991).Google Scholar
[4] Heinrich, B., Celinski, Z., Cochran, J. F., Arrot, A. S., Myrtle, K., Purcell, S.T., Phys. Rev. B 47, 5077 (1993).Google Scholar
[5] Rührig, M., Schäfer, R., Hubert, A., Mosier, R., Wolf, J. A., Demokritov, S., Grünberg, P., Phys. Stat. Sol. (a) 125, 635 (1991).Google Scholar
[6] Heinrich, J., Kirschner, J., Kowalewski, M., Cochran, J. F., Celinski, Z., and Arrot, A. S., Phys. Rev. B 44, 9348 (1991).Google Scholar
[7] Fert, A. and Grünberg, P., J. Magn. Magn. Mater. 140–144, 1 (1995).Google Scholar
[8] Elmers, H.J., Liu, G., Fritzsche, H., and Gradmann, U., Phys. Rev. B 52, R696 (1995).Google Scholar
[9] Schwabenhausen, J., Dürkop, T. and Elmers, H.J., to be published (1997).Google Scholar
[10] Elmers, H. J. and Gradmann, U., Appl. Phys. A 51, 255 (1990).Google Scholar
[11] Albrecht, M., Fritzsche, H. and Gradmann, U., Surf. Sci. 294, 1 (1993).Google Scholar
[12] Kunkel, R., Poelsema, B., Verheij, L. K., and Comsa, G., Phys. Rev. Lett. 65, 733 (1990).Google Scholar
[13] Smilauer, P., Wilby, M. R. and Vvedensky, D., Phys. Rev. B 47, 4119 (1993).Google Scholar
[14] Fritzsche, H., Elmers, H. J. and Gradmann, U., J. Magn. Magn. Mat. 135, 343 (1994).Google Scholar
[15] Fullerton, E.E., Mattson, J.E., Sowers, C.H., and Bader, S.D., Scripta Metallurgica et Materialia 33, 1637 (1995).Google Scholar
[16] Stiles, M.D., Phys. Rev. B 54, 14679 (1996).Google Scholar
[17] Stiles, M.D., Phys. Rev. B 48, 7238 (1993).Google Scholar
[18] Slonczewski, J.C., Phys. Rev. Lett. 67, 3172 (1991).Google Scholar
[19] Fullerton, E.E., Riggs, K.T., Sowers, C.H., Bader, S.D., Phys. Rev. Lett. 75, 330 (1995).Google Scholar