Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T10:12:19.598Z Has data issue: false hasContentIssue false

Binary Data Transmission Performance of Sub-20 nm Indium Antimonide Nanowires

Published online by Cambridge University Press:  30 June 2011

Ali Bilge Guvenc
Affiliation:
Department of Electrical Engineering, University of California-Riverside, Riverside, CA 92521, U.S.A.
Miroslav Penchev
Affiliation:
Department of Electrical Engineering, University of California-Riverside, Riverside, CA 92521, U.S.A.
Jiebin Zhong
Affiliation:
Department of Mechanical Engineering, University of California-Riverside, Riverside, CA 92521, U.S.A.
Cengiz Ozkan
Affiliation:
Department of Mechanical Engineering, University of California-Riverside, Riverside, CA 92521, U.S.A. Material Science and Engineering Program, University of California-Riverside, Riverside, CA 92521, U.S.A.
Mihrimah Ozkan
Affiliation:
Department of Electrical Engineering, University of California-Riverside, Riverside, CA 92521, U.S.A.
Get access

Abstract

We investigated the data transmission performance of indium antimonide (InSb) nanowires (NWs) synthesized on InSb (100) substrate using chemical vapor deposition (CVD) having diameters of 20 nm and below. The results indicate that the data transmission performance of NWs suffer from low mobility values on the order of 10-to-15 cm2V-1s-1 because of the scattering due to their small diameters, crystal defects and oxidation occurs during growth and cooling. The 20 nm NWs can sustain data rates up to 5 mega bits per second (Mbps) without any impedance matching and de-embedding of the parasitic parameters coming from the measurement system with a bit error rate (BER) level of 10-8. The data rate is directly proportional to the diameter of the NWs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhou, Y, Sreekala, S, Ajayan, P M and Nayak, S K, J. Phys.-Condens. Mat. 20 095209 (2008).Google Scholar
2. International Technology Roadmap for Semiconductors (2004).Google Scholar
3. Yarimbiyik, A E, Schafft, H A, Allen, R A, Zaghloul, M E and Blackburn, D L, Microelectron. Reliab. 46 1050–7 (2006).Google Scholar
4. Yang, Y. W., Li, L., Huang, X. H., Ye, M., Wu, Y. C. and Li, G. H., Applied Physics a-Materials Science & Processing 84(1-2), 7–9 (2006).Google Scholar
5. Petrzhik, E. A., Darinskaya, E. V., Erofeeva, S. A. and Raukhman, M. R., Physics of the Solid State 45(2), 266–269 (2003).Google Scholar
6. Kamilov, I. K., Stepurenko, A. A. and Kovalev, A. S., Physica Status Solidi B-Basic Research 209(2), 395–401 (1998).Google Scholar
7. Rode, D. L., Physical Review B 3(10), 3287 (1971).Google Scholar
8. Park, H. D., Prokes, S. M., Twigg, M. E., Ding, Y. and Wang, Z. L., Journal of Crystal Growth 304(2), 399–401 (2007).Google Scholar
9. Miller, D. A. B. and Ozaktas, H. M., Journal of Parallel and Distributed Computing 41(1), 42–52 (1997).Google Scholar
10. Shake, I., Takara, H. and Kawanishi, S., Journal of Lightwave Technology 22(5), 1296–1302 (2004).Google Scholar
11. Hannon, J. B., Kodambaka, S., Ross, F. M. and Tromp, R. M., Nature 440 (7080), 69-71 (2006).Google Scholar
12. Nilsson, Henrik A., Caroff, Philippe, Thelander, Claes, Lind, Erik, Karlstrom, Olov, and Wernersson, Lars-Erik, Appl. Phys. Lett. 96, 153505 (2010).Google Scholar
13. Vogel, Alexander T., de Boor, Johannes, Wittemann, Joerg V., Mensah, Samuel L., Werner, Peter, Schmidt, Volker, Crystal Growth & Design, 11(5), 1896–1900 (2011).Google Scholar
14. Ye, Q. L., Yamada, T., Liu, H., Scheffler, R., Mingo, N. and Leverenz, R., presented at the Mater. Res. Soc. Symp. Proc., (2006).Google Scholar
15. Wang, N., Cai, Y. and Zhang, R. Q., Materials Science & Engineering R-Reports 60(1-6), 1–51 (2008).Google Scholar
16. Huang, Y, Duan, X F, Cui, Y and Lieber, C M Nano Lett. 2 101–4 (2002).Google Scholar
17. Holzlohner, R., Grigoryan, V. S., Menyuk, C. R. and Kath, W. L., Journal of Lightwave Technology 20(3), 389–400 (2002).Google Scholar
18. Li, H., Xu, C., Srivastava, N. and Banerjee, K., IEEE Transactions on Electron Devices 56(9), 1799–1821 (2009).Google Scholar
19. Ong, C.-K., Hong, D., Cheng, K.-T. T. and Wang, L.-C., presented at the Proceedings of the Design, Automation and Test in Europe Conference and Exhibition Paris, (2004).Google Scholar
20. Downie, J. D., Journal of Lightwave Technology 23(6), 2031–2038 (2005).Google Scholar
21. Bergano, N. S., Kerfoot, F. W. and Davidson, C. R., IEEE Photonics Technology Letters 5(3), 304–306 (1993).Google Scholar