Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T19:59:51.315Z Has data issue: false hasContentIssue false

Biocompatibility and Anti-microbial Properties of Silver Modified Amorphous Carbon Films

Published online by Cambridge University Press:  31 January 2011

Argelia Almaguer-Flores
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México D. F., México Laboratorio de Genética Molecular, Facultad de Odontología, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México D. F. México
René Olivares-Navarrete
Affiliation:
Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
Laurie A. Ximénez-Fyvie
Affiliation:
Laboratorio de Genética Molecular, Facultad de Odontología, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México D. F. México
Oscar García-Zarco
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México D. F., México
Sandra E. Rodil
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México D. F., México
Get access

Abstract

Infection due microbes on implant surfaces has a strong influence on healing and long term viability of dental implants. The prevention and control of biofilms can be achieved by reducing the bacterial adhesion on the surface. The coating of medical devices with silver, or the addition of silver nanoparticles, are two possible ways to prevent device-associated infections. On the other hand, amorphous carbon films, in its different forms and compositions, have been studied as beneficial surface modification for implant materials. However, the bacterial adhesion on these films by oral bacteria in comparison to standard surfaces (Ti and SS) has been seen to be relatively high. In the oral cavity, the microbial ecology is complex and consists of hundreds of bacterial species, and therefore it is recommendable to study bacteria adhesion using various strains. In this work, we tested the biocompatibility and the anti-microbial properties of amorphous carbon films with the addition of silver nanoparticles. The a-C:Ag films were deposited by co-sputtering in an Argon plasma using a target made of graphite with a small piece of pure silver. Biocompatibility tests were performed using osteoblast-like cells (MG63) and included: cell proliferation, alkaline phosphatase specific activity and OPG. The bacterial adhesion test was evaluated after 1, 3 and 7 days of incubation. We used nine oral bacteria strains: Aggregatibacter actinomycetemcomitans serotype b, Actinomyces israelii, Campylobacter rectus, Eikenella corrodens, Fusobacterium nucleatum ss nucleatum, Parvimonas micra, Porphyromonas gingivalis, Prevotella intermedia and Streptococcus sanguinis. The effect of including silver in the a-C films was studied by X-ray Diffraction, Energy Dispersive spectroscopy, Scanning Electron Microscopy. The results showed that the films had silver nanoparticles (40-60 nm) uniformly distributed in the carbon matrix. The silver was crystalline with a maximum content of around 6 at%. The biological tests showed that a-C:Ag films had good biocompatibility properties, allowing the osteoblast to proliferate and produced osteogenic local factors. Concerning the antimicrobial properties of the a-C:Ag films, we did not observe an effect of the silver particles on bacterial adherence after 1 and 3 days of incubation; however, a significant reduction was observed after 7 days, compared to the a-C, Ti films or the bare SS substrate, suggesting that silver nanoparticles have a time-dependent antimicrobial effect.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Peters, G., Locci, R. and Pulverer, G., J Infect Dis 146 (4), 479482 (1982).Google Scholar
2. Harris, J. M. and Martin, L. F., Ann Surg 206 (5), 612620 (1987).Google Scholar
3. An, Y. H. and Friedman, R. J., J Invest Surg 11 (2), 139146 (1998).Google Scholar
4. Donlan, R. M., Emerging Infectious Diseases 7 (2), 277281 (2001).Google Scholar
5. Quirynen, M., De Soete, M. and van Steenberghe, D., Clin Oral Implants Res 13 (1), 119 (2002).Google Scholar
6. Vincent, J. L., Lancet 361 (9374), 20682077 (2003).Google Scholar
7. Gray, E. D., Peters, G., Verstegen, M. and Regelmann, W. E., Lancet 1 (8373), 365367 (1984).Google Scholar
8. Patel, R., Clin Orthop Relat Res (437), 4147 (2005).Google Scholar
9. Costerton, J. W., Clin Orthop Relat Res (437), 711 (2005).Google Scholar
10. An, Y. H. and Friedman, R. J., J Biomed Mater Res 43 (3), 338348 (1998).Google Scholar
11. Katsikogianni, M. and Missirlis, Y. F., Eur Cell Mater 8, 3757 (2004).Google Scholar
12. von Eiff, C., Peters, G. and Heilmann, C., Lancet Infect Dis 2 (11), 677685 (2002).Google Scholar
13. Liu, C., Zhao, Q., Liu, Y., Wang, S. and Abel, E. W., Colloids Surf B Biointerfaces 61 (2), 182187 (2008).Google Scholar
14. Yoshinari, M., Oda, Y., Kato, T., Okuda, K. and Hirayama, A., J Biomed Mater Res 52 (2), 388394 (2000).Google Scholar
15. Cordero, J., Munuera, L. and Folgueira, M. D., Injury 27 Suppl 3, SC3437 (1996).Google Scholar
16. Gottenbos, B., Van Der Mei, H. C., Busscher, H. J., Grijpma, D. W. and Feijen, J., J Mater Sci Mater Med 10 (12), 853855 (1999).Google Scholar
17. Strevett, K. A. and Chen, G., Res Microbiol 154 (5), 329335 (2003).Google Scholar
18. Scheuerman, T. R., Camper, A. K. and Hamilton, M. A., J Colloid Interface Sci 208 (1), 2333 (1998).Google Scholar
19. Barbour, M. E., O'Sullivan, D. J., Jenkinson, H. F. and Jagger, D. C., J Mater Sci Mater Med 18 (7), 14391447 (2007).Google Scholar
20. Klasen, H. J., Burns 26 (2), 117130 (2000).Google Scholar
21. Burrell, R. E., Ostomy Wound Manage 49 (5A Suppl), 1924 (2003).Google Scholar
22. Ewald, A., Gluckermann, S. K., Thull, R. and Gbureck, U., Biomed Eng Online 5, 22 (2006).Google Scholar
23. Bosetti, M., Masse, A., Tobin, E. and Cannas, M., Biomaterials 23 (3), 887892 (2002).Google Scholar
24. Darouiche, R. O., Clin Infect Dis 29 (6), 13711377; quiz 1378 (1999).Google Scholar
25. Schierholz, J. M., Lucas, L. J., Rump, A. and Pulverer, G., J Hosp Infect 40 (4), 257262 (1998).Google Scholar
26. Chen, W., Liu, Y., Courtney, H. S., Bettenga, M., Agrawal, C. M., Bumgardner, J. D. and Ong, J. L., Biomaterials 27 (32), 55125517 (2006).Google Scholar
27. Kwok, S. C. H., Zhang, W., Wan, G. J., McKenzie, D. R., Bilek, M. M. M. and Chu, P. K., Diamond and Related Materials 16 (4–7), 13531360 (2007).Google Scholar
28. Jung, R., Kim, Y., Kim, H. S. and Jin, H. J., J Biomater Sci Polym Ed 20 (3), 311324 (2009).Google Scholar
29. Rai, M., Yadav, A. and Gade, A., Biotechnol Adv 27 (1), 7683 (2009).Google Scholar
30. Roy, R. K. and Lee, K. R., Journal of Biomedical Materials Research Part B-Applied Biomaterials 83B (1), 7284 (2007).Google Scholar
31. Zhou, H., Xu, L., Ogino, A. and Nagatsu, M., Diamond and Related Materials 17 (7–10), 14161419 (2008).Google Scholar
32. Wang, J., Huang, N., Yang, P., Leng, Y., Sun, H., Liu, Z. Y. and Chu, P. K., Biomaterials 25 (16), 31633170 (2004).Google Scholar
33. Ishihara, M., Kosaka, T., Nakamura, T., Tsugawa, K., Hasegawa, M., Kokai, F. and Koga, Y., Diamond and Related Materials 15 (4–8), 10111014 (2006).Google Scholar
34. Jones, D. S., Garvin, C. P., Dowling, D., Donnelly, K. and Gorman, S. P., J Biomed Mater Res B Appl Biomater 78 (2), 230236 (2006).Google Scholar
35. Zhao, Q., Liu, Y., Wang, C. and Wang, S., Applied Surface Science 253 (17), 72547259 (2007).Google Scholar
36. Litzler, P. Y., Benard, L., Barbier-Frebourg, N., Vilain, S., Jouenne, T., Beucher, E., Bunel, C., Lemeland, J. F. and Bessou, J. P., J Thorac Cardiovasc Surg 134 (4), 10251032 (2007).Google Scholar
37. Rodil, S. E., Olivares, R., Arzate, H. and Muhl, S., Diamond and Related Materials 12 (3–7), 931937 (2003).Google Scholar
38. Rodil, S. E., Olivares, R. and Arzate, H., Biomed Mater Eng 15 (1–2), 101112 (2005).Google Scholar
39. Rodil, S. E., Olivares, R., Arzate, H. and Muhl, S. in Topics in Applied Physics 100; The future material for advanced technology applications, edited by Messina, G. and Santangelo, S. (Springer-Verlag, Germany, 2006), pp. 5575.Google Scholar
40. Olivares, R., Rodil, S. E. and Arzate, H., Surface & Coatings Technology 177, 758764 (2004).Google Scholar
41. Almaguer-Flores, A., Olivares-Navarrete, R., Lechuga-Bernal, A., Ximénez-Fyvie, L. A. and Rodil, S. E., Diamond and Related Materials (2009).Google Scholar
42. Paster, B. J., Boches, S. K., Galvin, J. L., Ericson, R. E., Lau, C. N., Levanos, V. A., Sahasrabudhe, A. and Dewhirst, F. E., J Bacteriol 183 (12), 37703783 (2001).Google Scholar