Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T07:02:17.010Z Has data issue: false hasContentIssue false

Bio-composite Materials for the Detection of Estrogen in Water Using Piezoresistive Microcantilever Sensors

Published online by Cambridge University Press:  01 February 2011

Timothy L. Porter
Affiliation:
tim.porter@nau.edu, Northern Arizona University, Physics, Bldg. 19, Room 209, Flagstaff, Arizona, 86011, United States
Tim Vail
Affiliation:
tim.vail@nau.edu, Northern Arizona University, Chemistry and Biochemistry, Flagstaff, Arizona, United States
Catherine Propper
Affiliation:
cathy.propper@nau.edu, Northern Arizona University, Chemistry and Biochemistry, Flagstaff, Arizona, United States
Nazmul Islam
Affiliation:
nazmul.islam@utb.edu, University of Texas Brownsville, Electrical Engineering, Brownsville, Texas, United States
Get access

Abstract

Embedded piezoresistive microcantilever (EPM) sensors were used to detect the presence of the compound estrogen in water samples. The sensor was fabricated with a host material hydrogel (Hypol) functionalized with estrogen antibody. This sensor was able to detect 1 ppm of estrogen in water, responding almost immediately to the estrogen addition, with a full sensor response (saturation) occurring after two minutes of exposure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Anderson, A. G. Jensen, T. K. Carlsen, E. Jorgensen, N. Andersson, A. M. Krarup, T. Keiding, N. and Skakkabaek, N. E. Hum. Reprod., vol. 15, p. 366, 2000.Google Scholar
[2] Rodgers-Gray, T. P., Jobling, S. Kelly, C. morris, S. Brightly, G. Waldock, M. J. Sumpter, J. P. and Tyler, C. R. Environ. Sci. Technol vol. 35, p. 462, 2001.Google Scholar
[3] Kolpin, D. W. Furlong, E. T. Meyer, M. T. Thurman, E. M. Zaugg, S. D. Barber, L. B. and Buxton, H. T., “Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams,” Environ. Sci. Technol vol. 36, p. 12021211, 2002.Google Scholar
[4] Guillette, L. J.Endocrine Disrupting Contaminants - Beyond the Dogma,” Environ. Health Perspect., vol. 114, p. 912, 2006.Google Scholar
[5] Bogi, C. Schwaiger, J. Ferling, H. Mallow, U. Steineck, C. Sinowatz, F. Kalbfus, W. Negele, R. D. Lutz, I., and Kloas, W.Endocrine Effects of Environmental Pollution on Xenopus Laevis and Rana Temporaria,” Environ. Res., vol. 93, p. 195201, 2003.Google Scholar
[6] Jobling, S. Nolan, M. Tyler, C. R. Brightly, G. and Sumpter, J. P.Widespread Sexual Disruption in Wild Fish,” Environ. Sci. Technol., vol. 32, p. 23982506, 1998.Google Scholar
[7] Gunter, R. L. Delinger, W. Porter, T. L. Stewart, R. and Reed, J.Hydration level monitoring using embedded piezoresistive microcantilever sensors,” Medical Engineering and Physics, vol. 27, p. 215220, 2005.Google Scholar
[8] Gunter, R. L. Delinger, W. G. Manygoats, K. Kooser, A. and Porter, T. L.Viral detection using an embedded piezoresistive microcantilever sensor,” Sensors and Actuators (A), vol. A107, p. 219224, 2003.Google Scholar
[9] Gunter, R. L. Zhine, R. Delinger, W. Manygoats, K. Kooser, A. and Porter, T. L.Investigation of DNA sensing using piezoresistive microcantilever probes,” IEEE Sensors, vol. 4, p. 430433, 2004.Google Scholar
[10] Porter, T. L. Delinger, W. and Gunter, R. L. “Embedded Piezoresistive Microcantilever Sensors: Materials for Sensing Chemical and Biological Analytes,” Proc. Materials Research Soc., 2005.Google Scholar
[11] Porter, T. L. Delinger, W. and Venedam, R.Gas Detection Using Embedded Piezoresistive Microcantilever Sensors in a Wireless Network,” Sensors and Transducers, vol. 94, p. 133138, 2008.Google Scholar
[12] Porter, T. L. Dillingham, T. R. and Venedam, R. J.A microcantilever sensor array for the detection and inventory of desert tortoises,” Applied Herpetology, vol. 5, p. 293301, 2008.Google Scholar
[13] Porter, T. L. Vail, T. Reed, J. and Stewart, R.Detection of Hydrogen Fluoride Gas Using Piezoresistive Microcantilever Sensors,” Sensors and Materials, vol. 20, p. 103110, 2008.Google Scholar
[14] Porter, T. L. Vail, T. and Venedam, R.Detection of Organophosphate Gases and Biological Molecules using Embedded Piezoresistive Microcantilever Sensors,” Proc. Mater. Res. Soc., vol. 1086E, p. 1086–u08, 2008.Google Scholar
[15] Porter, T. L. and Delinger, W.LabView based piezoresistive microcantilever sensor system,” Sensors and Transducers, vol. 68, p. 568574, 2006.Google Scholar
[16] Porter, T. L. Vail, T. Eastman, M. P. Stewart, R. Reed, J. Venedam, R. and Delinger, W.A solidstate sensor platform for the detection of hydrogen cyanide gas,” Sensors and Actuators, vol. 123, p. 313317, 2007.Google Scholar
[17] Kooser, A. Manygoats, K. Eastman, M. P. and Porter, T. L.Investigation of the antigen antibody reaction between anti-bovine serum albumin and bovine serum albumin using piezorsistive microcantilever sensors,” Biosensors and Bioelectronics, vol. 19, p. 503508, 2003.Google Scholar