Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T19:42:41.908Z Has data issue: false hasContentIssue false

Biopolymer Hydrogels Regenerated From Agave Tequilana Waste For Cytocompatable Materials

Published online by Cambridge University Press:  10 February 2014

Takaomi Kobayashi
Affiliation:
Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, Japan,
Karla L. Tovar-Carrillo
Affiliation:
Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, Japan, Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juarez 32300, Chihuahua,Mexico.
Kazuki Nakasone
Affiliation:
Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, Japan,
Motohiro Tagaya
Affiliation:
Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, Japan,
Get access

Abstract

Agave fibers were used to elaborate a transparent and flexible cellulose hydrogel films used as scaffold for tissue regeneration and tested by in vitro assays with NIH 3T3 fibroblast cells. Using dimethylacetamide/lithium chloride (DMAc/LiCl) system was possible to obtain cellulose solutions and hydrogel films were prepared by phase inverse method without cross-linker. The concentration of LiCl in the DMAc solution was varied from 4 to 12 wt% in the phase inversion process and then the cytotoxicity was tested for 14 days on the cultivation. The resultant hydrogel films showed better cytocompatibility than the PS dish used as control. The cell growing images showed that the hydrogel films with lower LiCl apparently contained ordered and aggregated fiber orientation. This comparison suggested that the segmental microstructure in the hydrogel films influenced fibroblast cells spreading. In addition, the agave hydrogel films displayed good stability without biodegradiation through the cell cultivation.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Langer, R., Vacanti, J. P., Science 260, 920 (1993).CrossRefGoogle Scholar
Sionkowske, A., Prog. Polym. Sci. 36, 1254 (2011).CrossRefGoogle Scholar
Lydon, M., Minett, T., Biomaterial 6, 396 (1985).CrossRefGoogle Scholar
Bartolo, L. De, Morelli, S., Bader, A., Drioli, E., Biomaterials 23, 2485 (2002).CrossRefGoogle Scholar
Thomas, B. H., Fryman, C., Liu, K., Mason, J., J. Mech. Behav. Biomed. Mater. 2, 588 (2009).Google Scholar
Filho, G. R., Ribeiro, S.D., da, C. Meireles, S., Da Silva, L.G., Ruggiero, R., Junior, M. F. F., Cerqueira, D. A., Assuncao, R. M. N., Zeni, M., Polleto, P., Ind. Crop. Prod. 33, 566 (2011).CrossRefGoogle Scholar
Li, Y., Mai, Y. W., Ye, L., Compos. Sci. Technol. 60, 2037 (2000).Google Scholar
Iñuguez-Covarrubias, G., Lang, S. F., Rowel, R.M., Bioresour. Technol. 77, 25 (2001).CrossRefGoogle Scholar
Iñuguez-Covarrubias, G., Diaz-Teres, R., Sanjuan-Dueñas, R., Anzaldo-Hernandez, J., Bioresour.Technol. 77, 101 (2001).Google Scholar
Tovar-Carrillo, L. Karla, Sugita-Sueyoshi, S., Tagaya, M., Kobayashi, T., Industrial & Engineering Chemistry Research (2013) (in press).Google Scholar
Kitano, H., Ichikawa, K., Ide, M., Fukuda, M., Langmuir 17, 1889 (2001).Google Scholar
Kitano, H., Ide, M., Motonaga, T., Langmuir 22, 2422 (2006).Google Scholar
Venegas-Sanchez, J. A., Tagaya, M., Kobayashi, T., Ultrasonics Sonochemistry 20, 1081 (2013).Google Scholar
Tamada, Y., Ikada, Q., J. Colloid. Interface. Sci. 155, 334 (1993)CrossRefGoogle Scholar
Salem, A. K., Tendler, S. J., Roberts, C. J., J. Biomed. Mater. Res. 61, 212(2002).CrossRefGoogle Scholar
Kacurakova, M., Wilson, R.H., Carbohydrate Polymers 44, 291(2001).Google Scholar